Posture-invariant hybrid scaling weight measurement algorithm for live eels
Abstract
Keywords: scale factor, weight measurement, non-contact, live eels
DOI: 10.25165/j.ijabe.20231602.7132
Citation: Liu Q, Han Y X, Yan G Q, Mo J S, Yang Z S. Posture-invariant hybrid scaling weight measurement algorithm for live eels. Int J Agric & Biol Eng, 2023; 16(2): 207-215.
Keywords
Full Text:
PDFReferences
Cheng J-H, Dai Q, Sun D-W, Zheng X-A, Liu D, Pu H-B. Applications of non-destructive spectroscopic techniques for fish quality and safety evaluation and inspection. Trends in Food Science & Technology, 2013; 34(1): 18-31.
Koltes J E, Cole J B, Clemmens R, Dilger R N, Kramer L M, Lunney J K, et al. 2019. A vision for development and utilization of high-throughput phenotyping and big data analytics in livestock. Frontiers in Genetics, 2019; 10: 1197. doi: c10.3389/fgene.2019.01197.
Liakos K G, Busato P, Moshou D, Pearson S, Bochtis D. Machine learning in agriculture: A review. Sensors, 2018; 18(8): 2674. doi: 10.3390/s18082674.
Ma X D, Zhu K X, Guan H O, Feng J R, Yu S, Liu G. High-throughput phenotyping analysis of potted soybean plants using colorized depth images based on a proximal platform. Remote Sensing, 2019; 11(9): 1085. doi: 10.3390/rs11091085.
Banerjee B P, Spangenberg G, Kant S. Fusion of spectral and structural information from aerial images for improved biomass estimation. Remote Sensing, 2020; 12(19): 3164. doi: 10.3390/rs12193164.
Niu Y X, Zhang L Y, Zhang H H, Han W T, Peng X S. Estimating above-ground biomass of maize using features derived from UAV-based RGB imagery. Remote Sensing, 2019; 11(11): 1261. doi: 10.3390/rs11111261.
Calixto R, Neto L G P, de Silveira Cavalcante T, Aragão M F, Silva E D. A computer vision model development for size and weight estimation of yellow melon in the Brazilian northeast. Scientia Horticulturae, 2019; 256: 108521. doi: 10.1016/j.scienta.2019.05.048.
Cheng H, Damerow L, Sun Y R, Blanke M. Early yield prediction using image analysis of apple fruit and tree canopy features with neural networks. Journal of Imaging, 2017; 3(1): 6. doi: 10.3390/jimaging3010006.
Rahman M M, Robson A, Bristow M. Exploring the potential of high resolution WorldView-3 imagery for estimating yield of mango. Remote Sensing, 2018; 10(12): 1866. doi: 10.3390/rs10121866.
Jung D-H, Park S H, Han X Z, Kim H-J. Image processing methods for measurement of lettuce fresh weight. Journal of Biosystems Engineering, 2015; 40(1): 89-93.
Koirala A, Walsh K B, Wang Z L, McCarthy C. Deep learning - Method overview and review of use for fruit detection and yield estimation. Computers and Electronics in Agriculture, 2019; 162: 219-234.
Zhang Z Q. Research on freshwater fish species identification and weight prediction based on machine vision. Master dissertation. Wuhan: Huazhong Agricultural University, 2011; 66p. (in Chinese)
Li L, Guo X Y. Research on fish classification method based on computer vision. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2015; 36(5): 120-124. (in Chinese)
Viazzi S, Van Hoestenberghe S, Goddeeris B M, Berckmans D. Automatic mass estimation of Jade perch Scortum barcoo by computer vision. Aquacultural Engineering, 2014; 64: 42-48.
Ma G Q, Tian Y C, Li X L. Individual weight estimation of narrow-bodied tongue sole based on irregular image area measurement. Microcomputers and Applications, 2016; 35(16): 67-71. (in Chinese)
Wang L, Sun C H, Li W Y, Ji Z T, Zhang X, Wang Y Z, et al. Establishment of broiler quality estimation model based on depth image and BP neural network. Thransactions of the CSAE, 2017; 33(13): 199-205. (in Chinese)
De Wet L, Vranken E, Chedad A, Aerts J M, Ceunen J, Berckmans D. Computer-assisted image analysis to quantify daily growth rates of broiler chickens. British Poultry Science, 2003; 44(4): 524-532.
Schofield C P, Marchant J A, White R P, Brandl N, Wilson M. Monitoring pig growth using a prototype imaging system. Journal of Agricultural Engineering Research, 1999; 72(3): 205-210.
Yang Y, Teng G H, Li B M, Shi Z X. Measurement of pig weight based on computer vision. Transactions of the CSAE, 2006; 22(2): 127-131. (in Chinese)
Fu W S, Teng G H, Yang Y. Research on three-dimensional model of pig’s weight estimating. Transactions of the CSAE, 2006; 22(S2): 84-87. (in Chinese)
Alikhanov J, Penchev S M, Georgieva T D, Modazhanov A, Shynybay Z, Daskalov P I. An indirect approach for egg weight sorting using image processing. Journal Of Food Measurement And Characterization, 2018; 12: 87-93.
Wang J F, Luo X W, Hong T S, Ge Z Y. Application of computer vision technology in detecting mango weight and surface bruise. Transactions of the CSAE, 1998(4):186-189. (in Chinese)
Kalantar A, Edan Y, Gur A., Klapp, l. A deep learning system for single and overall weight estimation of melons using unmanned aerial vehicle images. Comput Electron Agr, 2020; 178.
Dowlati M, Mohtasbi S S, de la Guardia M. Application of machine-vision techniques to fish-quality assessment. TrAC Trends in Analytical Chemistry, 2012; 40: 168-179.
Dutta M K, Issac A, Minhas N. Image processing based method to assess fish quality and freshness. Journal of Food Engineering, 2016; 177: 50-58.
Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems Man & Cybernetics, 2007; 9(1): 62-66.
Liu G L, Reda F A, Shih K J, Wang T-C, Tao A, Catamzaro B. Image inpainting for irregular holes using partial convolutions. In: Computer Vision – ECCV 2018, Springer, 2018; pp.89-105. doi: 10.1007/978-3-030-01252-6_6.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.