Accurate crop row recognition of maize at the seedling stage using lightweight network
Abstract
Keywords: computer vision, crop row detection, precision agriculture, semantic segmentation
DOI: 10.25165/j.ijabe.20241701.7051
Citation: Wei J, Zhang M F, Wu C C, Ma Q, Wang W T, Wan C F. Accurate crop row recognition of maize at the seedling stage using lightweight network. Int J Agric & Biol Eng, 2024; 17(1): 189-198.
Keywords
Full Text:
PDFReferences
Liu C, Lin H, Li Y, Gong L, Miao Z. Analysis on status and development trend of intelligent control technology for agricultural equipment. Transactions of the CSAM, 2020; 51(1): 1–18.
Zheng H, Zhou X, He J, Yao X, Cheng T, Zhu Y, et al. Early season detection of rice plants using RGB, NIR-G-B and multispectral images from unmanned aerial vehicle (UAV). Computers and Electronics in Agriculture, 2020; 169: 105223.
Shkanaev A Y, Krokhina D A, Polevoy D V, Panchenko A V, Sholomov D L, Sadekov R N. Analysis of straw row in the image to control the trajectory of the agricultural combine harvester (Erratum). Tenth International Conference on Machine Vision (ICMV 2017), SPIE, 2018; pp.19–28. doi: 10.1117/12.2310143.
Ronchetti G, Mayer A, Facchi A, Ortuani B, Sona G. Crop row detection through uav surveys to optimize on-farm irrigation management. Remote Sensing, 2020; 12(12): 1967.
Adhikari S P, Kim G, Kim H. Deep neural network-based system for autonomous navigation in paddy field. IEEE Access, 2020; 8: 71272–71278.
Rabab S, Badenhorst P, Chen Y P P, Daetwyler H D. A template-free machine vision-based crop row detection algorithm. Precision Agric, 2021; 22(1): 124–53.
Yang Y, Zhou Y, Yue X, Zhang G, Wen X, Ma B, et al. Real-time detection of crop rows in maize fields based on autonomous extraction of ROI. Expert Systems with Applications, 2023; 213: 118826.
Li X, Su J H, Yue Z C, Wang S C, Duan F T, Hua J W. Vision-based navigation line extraction by combining crop row detection and RANSAC algorithm. In: 2022 IEEE International Conference on Mechatronics and Automation (ICMA), 2022; pp.1097–1002. doi: 10.1109/ICMA54519.2022.9856296.
He J, Zang Y, Luo X W, Zhao R M, He J, Jiao J K. Visual detection of rice rows based on Bayesian decision theory and robust regression least squares method. Int J Agric & Biol Eng, 2021; 14(1): 199–206.
Cao M Y, Tang F F, Ji P, Ma F Y. Improved real-time semantic segmentation network model for crop vision navigation line detection. Frontiers in Plant Science, 2022; 13: 898131.
Chen J Q, Qiang H, Wu J H, Xu G W, Wang Z K, Liu X. Extracting the navigation path of atomato-cucumbergreenhouse robot based on a median point Hough transform. Computers and Electronics in Agriculture, 2020; 174: 105472.
Vidović I, Cupec R, Hocenski Ž. Crop row detection by global energy minimization. Pattern Recognition, 2016; 55: 68–86.
Su W, Jiang K P, Yan A, Liu Z, Zhang M Z, Wang W. Monitoring of planted lines for breeding corn using UAV remote sensing image. Transactions of the CSAE, 2018; 34(10): 92–98. (in Chinese)
Kanagasingham S, Ekpanyapong M, Chaihan R. Integrating machine vision-based row guidance with GPS and compass-based routing to achieve autonomous navigation for a rice field weeding robot. Precision Agric, 2020; 21(4): 831–855.
Wang S, Zhang W, Wang X, Yu S. Recognition of rice seedling rows based on row vector grid classification. Computers and Electronics in Agriculture, 2021; 190: 106454.
Tu C, van Wyk B J, Djouani K, Hamam Y, Du S. An efficient crop row detection method for agriculture robots. In: 2014 7th International Congress on Image and Signal Processing, 2014; pp.655–659. doi: 10.1109/CISP.2014.7003860.
Jiang G Q, Zhao C J, Si Y S. A machine vision based crop rows detection for agricultural robots. In: 2010 International Conference on Wavelet Analysis and Pattern Recognition, 2010; pp.114–118. doi: 10.1109/ICWAPR.2010.5576422.
Li Y H, Wang C F, Wang C Y, Deng X L, Zhao Z X, Chen S D, et al. Detection of the foreign object positions in agricultural soils using Mask-RCNN. Int J Agric & Biol Eng, 2023; 16(1): 220–231.
Chen P F, Ma X. Research status and trends of automatic detection of crop planting rows. Scientia Agricultura Sinica, 2021; 54(13): 2737–2745.
Wang A, Zhang M, Liu Q, Wang L, Wei X. Seedling crop row extraction method based on regional growth and mean shift clustering. Transactions of the CSAE, 2021; 37(19): 202–10. (in Chinese)
Liu H, Jia H, Wang G, Glatzel S, Yuan H, Huang D. Method and experiment of maize ( Zea mays L.) stems recognition based on deep learning and image processing. Transactions of the CSAM, 2020; 51(4): 207–215. (in Chinese)
Zhang Q, Wang J H, Li B. Extraction method for centerlines of rice seedings based on YOLOv3 target detection. Transactions of the CSAM, 2020; 51(8): 34–43. (in Chinese)
Liu F Y, Lin G S, Shen C H. CRF learning with CNN features for image segmentation. Pattern Recognition, 2015; 48(10): 2983–2992.
Luo Y S, Yang L, Wang L, Cheng H. Efficient CNN-CRF network for retinal image segmentation. Cognitive Systems and Signal Processing, Singapore: Springer, 2017; pp.157–65. doi: 10.1007/978-981-10-5230-9_17.
Pan X G, Shi J P, Luo P, Wang X G, Tang X O. Spatial as deep: Spatial CNN for traffic scene understanding. Proceedings of the AAAI Conference on Artificial Intelligence, 2018; 32(1): 12301.
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017; 39(4): 640–651.
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W M, Frangi A F, editors. Medical image computing and computer-assisted intervention–MICCAI 2015, Cham: Springer International Publishing; 2015; pp.234–241. doi: 10.1007/978-3-319-24574-4_28.
Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017; 39(12): 2481–2495.
Chen L C, Papandreou G, Kokkinos I, Murphy K, Yuille A L. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018; 40(4): 834–848.
Yu C Q, Gao C X, Wang J B, Yu G, Shen C H, Sang N. BiSeNet V2: Bilateral network with guided aggregation for real-time semantic segmentation. Int J Comput Vis, 2021; 129(11): 3051–3068.
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.