Intelligent navigation algorithm of plant phenotype detection robot based on dynamic credibility evaluation
Abstract
Keywords: plant phenotype detection, robot, dynamic credibility evaluation, intelligent navigation, multi-sensor information fusion
DOI: 10.25165/j.ijabe.20211406.6615
Citation: Lu W, Zeng M J, Qin H H. Intelligent navigation algorithm of plant phenotype detection robot based on dynamic credibility evaluation. Int J Agric & Biol Eng, 2021; 14(6): 195–206.
Keywords
Full Text:
PDFReferences
Pini M, Marucco G, Falco G, Nicola M, De Wilde W. Experimental testbed and methodology for the assessment of RTK GNSS receivers used in precision agriculture. IEEE Access, 2020; 8(1): 14690-14703.
Yang J, Du T, Liu X, Niu B, Guo L. Method and implementation of a bioinspired polarization-based attitude and heading reference system by integration of polarization compass and inertial sensors. IEEE Transactions on Industrial Electronics, 2020; 67(11): 9802-9812.
Lu W, Zeng M J, Wang L, Luo H, Mukherjee S, Huang X H, et al. Navigation algorithm based on the boundary line of tillage soil combined with guided filtering and improved anti-noise morphology. Sensors, 2019; 19(18): 3918. doi: 10.3390/s19183918.
Bolourian N, Hammad A. LiDAR-equipped UAV path planning considering potential locations of defects for bridge inspection. Automation in Construction, 2020; 117(16): 103250. doi: 10.1016/j.autcon.2020.103250.
Zhu J P, Cen H Y, He L W, He Y. Development and performance evaluation of a multi-rotor unmanned aircraft system for agricultural monitoring. Smart Agriculture, 2019; 1(1): 43-52. (in Chinese)
Li S C, Zhang M, Cao R Y, Ji Y H, Zhang Z Q, Li H, et al. Development of the automatic navigation system for combine harvester based on GNSS. Int J Agric & Biol Eng, 2021; 14(5): 163–171.
Zhou H, Hu L, Luo X W, Tang L M, Du P, Mao T, et al. Design and test of laser-controlled paddy field levelling-beater. Int J Agric & Biol Eng, 2020; 13(1): 57–65.
Tayebi A, Gomez J, Fernández M, de Adana F S, Gutiérrez O. Low-cost experimental application of real-time kinematic positioning for increasing the benefits in cereal crops. Int J Agric & Biol Eng, 2021; 14(3): 194–199.
Huang Z, Ono M, Shiigi T, Suzuki T, Habaragamuwa H, Nakanishi H, et al. Is spread spectrum sound a robust local positioning system for a quadcopter operating in a greenhouse? Chemical Engineering Transactions, 2017; 58(1): 829-834.
Tientadakul R, Nakanishi H, Shiigi T, Huang Z, Jacky Tsay L W, Kondo N. Indoor navigation system by combining ultrasonic wave TOA and inertial measurement. 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), 2020; pp.1690-1695. doi: 10.23919/SICE48898.2020.9240233.
de Miguel M Á, García F, Armingol J M. Improved LiDAR probabilistic localization for autonomous vehicles using GNSS. Sensors, 2020; 20(11): 3145. doi: 10.3390/s20113145.
Kovacs G, Kunii Y, Maeda T, Hashimoto H. Trajectory estimation and position correction for hopping robot navigation using monocular camera. ROBOMECH Journal, 2020; 7(1): 25. doi:10.1186/s40648-020-00172-3.
Ma Y, Zhang W Q, Qureshi W S, Gao C, Zhang C L, Li W. Autonomous navigation for a wolfberry picking robot using visual cues and fuzzy control. Information Processing in Agriculture, 2021; 8(1): 15-26. doi: 10.1016/j.inpa.2020.04.005.
Velasquez A E B, Higuti V A H, Guerrero H B, Gasparino M V, Magalhaes D V, Aroca R V, et al. Reactive navigation system based on H∞ control system and LiDAR readings on corn crops. Precision Agriculture, 2020; 21(2): 349-368.
Huang Z, Tsay L W J, Zhao X, Fukuda H, Shiigi T, Nakanishi H, et al. Position and orientation measurement system using spread spectrum sound for greenhouse robots. Biosystems Engineering. 2020; 198(1): 50-62.
Elghamrawy H, Karaim M, Tamazin M, Noureldin A. Experimental evaluation of the impact of different types of jamming signals on commercial GNSS receivers. Applied Sciences, 2020; 10(12): doi: 4240. 10.3390/app10124240.
Mahmud M S A, Abidin M S Z, Mohamed Z, Rahman M K I A, Buyamin S. Enhanced probabilistic roadmap for robot navigation in virtual greenhouse environment. Modeling, Design and Simulation of Systems, 2017; 752(1): 172-182.
Jasinski M, Maczak J, Radkowski S, Korczak S, Rogacki R, Mac J, et al. Autonomous agricultural robot-conception of inertial navigation system. Challenges in Automation, Robotics and Measurement Techniques, Springer, 2016; 440(1): 669-679.
Alberto-Rodríguez A, Neri-Muñoz M, Fernández, J R, Márquez-Vera M A, Ramos-Velasco L E, Díaz-Parra O, et al. Review of control on agricultural robot tractors. International Journal of Combinatorial Optimization Problems and Informatics, 2020; 11(3): 9-20.
Aghi D, Mazzia V, Chiaberge M. Local motion planner for autonomous navigation in vineyards with a RGB-D camera-based algorithm and deep learning synergy. Machines, 2020; 8(2): 27. doi: 10.3390/machines8020027.
Kolar P, Benavidez P, Jamshidi M. Survey of data fusion techniques for laser and vision based sensor integration for autonomous navigation. Sensors, 2020; 20(8): 2180. doi: 10.3390/s20082180.
He W, Lian B W, Zhang L L. GNSS/INS ultra-tightly integrated tracking algorithm assisted by fuzzy control. Journal of Northwestern Polytechnical University, 2016; 34(1): 98-105. (in Chinese)
Yang G C, Li Q, He W. A new method of initial alignment assisted by pseudo-satellites. Navigation Positioning & Timing, 2017; 4(3): 17-21. ( in Chinese)
Jin X, Li R S, Ji J T, Yuan Y W, Li M Y. Obstacle avoidance transplanting method based on Kinect visual processing. Int J Agric & Biol Eng, 2021; 14(5): 72–78.
Li HY, Liu H, Cao N, Peng Y, Xie SR, Luo, J, et al. Real-time RGB-D image stitching using multiple Kinects for improved field of view. International Journal of Advanced Robotic Systems, 2017; 14(2): 172988141769556. doi: 10.1177/1729881417695560.
Hasan S M A, Ko K. Depth edge detection by image-based smoothing and orphological operations. Journal of Computational Design and Engineering. 2016; 3(1):191-197.
Paulo F, Zhao Z, Jithin M, Nusrat J, John S. Distinguishing volunteer corn from soybean at seedling stage using images and machine learning. Smart Agriculture, 2020; 2(3): 61-74.
Qu Y D, Cui C S, Chen S B, Li J Q. A fast subpixel edge detection method using Sobel-Zernike moments operator. Image and Vision Computing, 2005; 23(1): 11-17.
Grafova L, Kasparova M, Kakawand S, Prochazka A, Dostalova T. Study of edge detection task in dental panoramic radiographs. Dentomaxillofacial Radiology, 2013; 42(7): 720120391. doi: 10.1259/dmfr.20120391.
Li K, He F Z, Yu H P. Robust visual tracking based on convolutional features with illumination and occlusion handing. Journal of Computer Science and Technology, 2018; 33(1): 223-236.
Rosten E, Drummond T. Fusing points and lines for high performance tracking. In: 10th IEEE International Conference on Computer Vision (ICCV 05), Beijing: IEEE, 2005; 1: 1508-1515. doi: 10.1109/ICCV.2005.104.
Rosten E, Drummond T. Machine learning for high-speed corner detection. In: Computer Vision – ECCV 2006, Springer, 2006; 3951(1):430-443.
Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005; 27(10): 1615-1630.
Lindeberg T. Image matching using generalized scale-space interest points. Journal of Mathematical Imaging and Vision, 2015; 52(1): 3-36.
Stanhope T P, Adamchuk V I. Feature-based visual tracking for agricultural implements. IFAC PapersOnline, 2016; 49(16): 359-364.
Hinton G E, Osindero S, The Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006; 18(7): 1527-1554.
Mohamed A R, Dahl G E, Hinton G. Acoustic modeling using deep belief networks. IEEE Transactions on Audio Speech and Language Processing, 2012; 20(1): 14-22.
Li H W, Xu B S, Du C H, Yang Y. Performance prediction and power density maximization of a proton exchange membrane fuel cell based on deep belief network. Journal of Power Sources, 2020; 461(1): 228154. doi: 10.1016/j.jpowsour.2020.228154.
Liu W B, Wang Z D, Liu X H, Zeng N Y, Liu Y R, Alsaadi F E. A survey of deep neural network architectures and their applications. Neurocomputing, 2017; 234(1): 11-26.
Xu J, Yang G, Sun Y, Picek S. A multi-sensor information fusion method based on factor graph for integrated navigation system. IEEE Access, 2021; 9(1): 12044-12054.
Shamshiri R R, Weltzien C, Hameed I A, Yule I J, Grift T E, Balasundram S K, et al. Research and development in agricultural robotics: A perspective of digital farming. Int J Agric & Biol Eng, 2018; 11(4): 1–14.
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.