Optimization of aviation adjuvants based on wettability analysis for insecticide application on maize using UAV
Abstract
Keywords: unmanned aerial vehicles, spray adjuvants, wettability, maize insecticide application
DOI: 10.25165/j.ijabe.20211405.6605
Citation: Zang Y, Zhou Z Y, Zang Y, Luo X Y, Liao J, Ming R, et al. Optimization of aviation adjuvants based on wettability analysis for insecticide application on maize using UAV. Int J Agric & Biol Eng, 2021; 14(5): 11–18.
Keywords
Full Text:
PDFReferences
Wang Z Y, He K L, Zhang F, Lu X, Babendreier D. Mass rearing and release of Trichogramma for biological control of insect pests of corn in China. Biol Control, 2014; 68: 136–144.
Wang G B, Lan Y B, Qi H X, Chen P C, Hewitt A, Han Y X. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Pest Manag Sci, 2019; 75(6): 1546–1555.
Zheng Y J, Yang S H, Zhao C J, Chen L P, Lan Y B, Yu T. Modelling operation parameters of UAV on spray effects at different growth stages of corns. Int J Agric & Biol Eng, 2017; 10(3): 57–66.
Omar Z, Idris N, Rahim M Z. Preliminary design of aerial spraying system for microlight aircraft. Journal of Physics Conference Series, 2017; 914(1): 012003. doi:10.1088/1742-6596/914/1/012003
García-Santos G, Feola G, Nuyttens D, Diaz Z. Drift from the use of hand-held knapsack pesticide sprayers in Boyacá (Colombian Andes). J Agr Food Chem, 2016; 64(20): 3990–3998.
Cao L D, Cao C, Wang Y, Li X H, Zhou Z L, Li F M, et al. Visual determination of potential dermal and inhalation exposure using Allura red as an environmentally friendly pesticide surrogate. Acs Sustain Chem Eng, 2017; 5(5): 3882–3889.
Zang Y, Gu X Y, Zhou Z Y, Luo X W, Zang Y, Qi X Y, et al. Review of tensairity and its applications in agricultural aviation. Int J Agric & Biol Eng, 2016; 9(3): 1–14.
Rasmussen J, Nielsen J, Garcia-Ruiz F, Christensen S, Streibig J C, Lotz B. Potential uses of small unmanned aircraft systems (UAS) in weed research. Weed Res, 2013; 53(4): 242–248.
Zang Y, Zang Y, Zhou Z Y, Gu X Y, Jiang R, Kong L X, et al. Design and anti-sway performance testing of pesticide tanks in spraying UAVs. Int J Agric & Biol Eng, 2019; 12(1): 10–16.
Chen S D, Lan Y B, Li J Y, Zhou Z Y, Liu A M, Mao Y D. Effect of wind field below unmanned helicopter on droplet deposition distribution of aerial spraying. Int J Agric & Biol Eng, 2017; 10(3): 67–77.
Appah S, Jia W D, Ou M X, Wang P, Asante E A. Analysis of potential impaction and phytotoxicity of surfactant-plant surface interaction in pesticide application. Crop Prot, 2020; 127: doi: 104961. 10.1016/ j.cropro.2019.104961
De Assuncao H H T, Campos SFB, Sousa L A, Lemes E M, Zandonadi C H S, da Cunha J P A R. Adjuvants plus phytosanitary products and the effects on the physical-chemical properties of the spray liquids. Biosci J, 2019; 35(6): 1878–1885.
Calou V B C, Teixeira A D S, Moreira L C J, Da Rocha Neto O C, Da Silva J A. Estimation of maize biomass using unmanned aerial vehicles. Engenharia Agrícola, 2019; 39(6): 744–752.
Zhang M N, Zhou J F, Sudduth KA, Kitchen NR. Estimation of maize yield and effects of variable-rate nitrogen application using UAV-based RGB imagery. Biosyst Eng., 2020; 189: 24–35.
Zhang L Y, Niu Y X, Zhang HH, Han WT, Li G, Tang J D, et al. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring. Front Plant Sci., 2019; 10: 1270.
Xiao Q G, Xin F, Lou Z X, Zhou T T, Wang G B, Han X Q, et al. Effect of aviation spray adjuvants on defoliant droplet deposition and cotton defoliation efficacy sprayed by unmanned aerial vehicles. Agronomy-Basel, 2019; 9: 2175.
Meng Y H, Lan Y B, Mei G Y, Guo Y W, Song J L, Wang Z G. Effect of aerial spray adjuvant applying on the efficiency of small unmanned aerial vehicle for wheat aphids control. Int J Agr Biol Eng, 2018; 11(5): 46–53.
Klein R N, Golus J A, Nelms K L. The effect of adjuvants, pesticide formulation, and spray nozzle tips on spray droplet size. J Astm Int., 2009; 6(6): 1–7.
Wang X N, He X K, Song J L, Wang Z C, Wang C L, Wang S L, et al. Drift potential of UAV with adjuvants in aerial applications. Int J Agric & Biol Eng, 2018; 11(5): 54–58.
Zhu Y Q, Yu C X, Li Y, Zhu Q Q, Zhou L, Cao C, et al. Research on the changes in wettability of rice (Oryza sativa.) leaf surfaces at different development stages using the OWRK method. Pest Manag Sci, 2014; 70(3): 462–469.
Castro E B, Carbonari C A, Velini E D, Gomes G L G C, Belapart D. Influence of adjuvants on the surface tension, deposition and effectiveness
of herbicides on fleabane plants. Planta Daninha, 2018. (In press).
Gao Y, Lu J J, Zhang P J, Shi G C, Li Y, Zhao J Y, et al. Wetting and adhesion behavior on apple tree leaf surface by adding different surfactants. Colloids Surf. B, 2020; 187: 110602.
Fritz B K, Hoffmann W C, Martin D E, Thomson S J. Aerial application methods for increasing spray deposition on wheat heads. Appl Eng Agric, 2007; 23(6): 709–715.
Zhu H P, Salyani M, Fox R D. A portable scanning system for evaluation of spray deposit distribution. Comput Electron Agr, 2011; 76(1): 38–43.
Lan Y, Hoffmann W C, Fritz B K, Martin D E, Lopez J D. Spraydrift mitigation with spray mix adjuvants. Appl Eng Agric, 2008; 24(1): 5–10.
Sun J S, Policello G A, Paccione M A. Determination of organosilicone surfactant phytotoxicity for selected vegetable species. Pesticide Formulations and Application Systems, 2003; 23: 77–84.
Yuan H Z, Wang G B. Effects of droplet size and deposition density on filed efficacy of pesticides. Plant Protection, 2015; 41(6): 9–16. (in Chinese)
Stevens P J G. Organosilicone surfactants as adjuvants for agrochemicals. Pest Management Science, 2010; 38: 103–122.
Zhang Z J, Shen L W, Hu W X, Mi Y Z, Yuan H K, Kuang J Z, et al. Treatment of oily wastewater using a hyperbranched poly (amido amine) demulsifier with 1,4-phenylene diamine as central core. Chemistry Select, 2020; 32(5): 9980–9988.
Wang S, Pan W X, Gao N, Zhang S S, Zhang H. Effect of adjuvants on wetting performance and efficacy of topramezone 30% SC. Agrochemicals, 2020; 59(6): 413–417. (in Chinese)
Zhang C H, Ma Y, Du F P. Research progress on the wetting and deposition behaviors of pesticide droplet on target surfaces with the addition of surfactants. Chinese Journal of Pesticide Science, 2019; 21(Z1): 5–6. (in Chinese)
Mc Tanure M, da Costa L M, Huiz H A, Fernandes R B A, Cecon P R, Pereira J D, et al. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil Till Res, 2019; 192: 164–173.
Hui F, Zhang Z Q, Xiao S P, Liu Y F. Influence of leaf surface wettability on droplet deposition effect of rape leaves and their correlation. Journal of Agriculture and Food Research, 2019; 1: 100011. doi: 10.1016/j.jafr.2019.100011
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.