Design and application of the dynamic detection platform for testing the micromechanical properties of agricultural products
Abstract
Keywords: elasticity module, micro tensile, parenchyma tissue, micromechanical properties, agricultural products
DOI: 10.25165/j.ijabe.20221506.6548
Citation: Hao Y F, Wang Y W, Jiang Q J, Zhang J, Wang J. Design and application of the dynamic detection platform for testing the micromechanical properties of agricultural products. Int J Agric & Biol Eng, 2022; 15(6): 8–15.
Keywords
Full Text:
PDFReferences
Ahmadi E, Barikloo H, Kashfi M. Viscoelastic finite element analysis of the dynamic behavior of apple under impact loading with regard to its different layers. Comput Electron Agric, 2016; 121: 1–11.
Carvalho E D, Magalhaes R R, Santos F L. Geometric modeling of a coffee plant for displacements prediction. Comput Electron Agric, 2016; 123: 57–63.
Du D D, Wang B, Wang J, Yao F Q, Hong X Z. Prediction of bruise susceptibility of harvested kiwifruit (Actinidia chinensis) using finite element method. Postharvest Biol Technol, 2019; 152: 36–44.
Edrris M K, Al-Gaadi K A, Hassaballa A A, Tola E, Ahmed K A M. Impact of soil compaction on the engineering properties of potato tubers. Int J Agric Biol Eng, 2020; 13(2): 163–167.
Zhang B H, Guan S J, Ning X F, Gong Y J. Mechanical characteristics of Hanfu apple at low temperature. Int J Agric Biol Eng, 2014; 7(3): 107–113.
Sadrmanesh V, Chen Y. Simulation of tensile behavior of plant fibers using the discrete element method (DEM). Composites Part a-Applied Science and Manufacturing, 2018; 114: 196–203.
Li Z G, Andrews J, Wang Y Q. Mathematical modelling of mechanical damage to tomato fruits. Postharvest Biol Technol, 2017; 126: 50–56.
Diels E, Wang Z, Nicolai B, Ramon H, Smeets B. Discrete element modelling of tomato tissue deformation and failure at the cellular scale. Soft Matter, 2019; 15(16): 3362–3378.
Bargel H, Neinhuis C. Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. J Exp Bot, 2005; 56(413): 1049–1060.
Nikara S, Ahmadi E, Nia A A. Finite element simulation of the micromechanical changes of the tissue and cells of potato response to impact test during storage by scanning electron microscopy. Postharvest Biol Technol, 2020; 164: 111153. doi: 10.1016/j.postharvbio.2020.111153.
Jakes J E, Frihart C R, Beecher J F, Moon R J, Stone D S. Experimental method to account for structural compliance in nanoindentation measurements. J Mater Res, 2008; 23(4): 1113–1127.
Meng Y J, Wang S Q, Cai Z Y, Young T M, Du G B, Li Y J. A novel sample preparation method to avoid influence of embedding medium during nano-indentation. Applied Physics a-Materials Science & Processing, 2013; 110(2): 361–369.
Zhou X W, Ren S H, Lu M Z, Zhao S T, Chen Z J, Zhao R J, et al. Preliminary study of cell wall structure and its mechanical properties of C3H and HCT RNAi transgenic poplar sapling. Sci Rep, 2018; 8: 10508. doi: 10.1038/s41598-018-28675-5.
Arnould O, Siniscalco D, Bourmaud A, Le Duigou A, Baley C. Better insight into the nano-mechanical properties of flax fibre cell walls. Ind Crops Prod, 2017; 97: 224–228.
Siniscalco D, Arnould O, Bourmaud A, Le Duigou A, Baley C. Monitoring temperature effects on flax cell-wall mechanical properties within a composite material using AFM. Polym Test, 2018; 69: 91–99.
Shiu C, Zhang Z, Thomas C R. A novel technique for the study of bacterial cell mechanical properties. Biotechnol Tech, 1999; 13(10): 707–713.
Blewett J, Burrows K, Thomas C. A micromanipulation method to measure the mechanical properties of single tomato suspension cells. Biotechnol Lett, 2000; 22(23): 1877–1883.
Thomas C R, Zhang Z, Cowen C. Micromanipulation measurements of biological materials. Biotechnol Lett, 2000; 22(7): 531–537.
Wang L, Hukin D, Pritchard J, Thomas C. Comparison of plant cell turgor pressure measurement by pressure probe and micromanipulation. Biotechnol Lett, 2006; 28(15): 1147–1150.
Liu R, Wang H, Li X P, Ding G F, Yang C S. A micro-tensile method for measuring mechanical properties of MEMS materials. J Micromech Microeng, 2008; 18(6): 065002. doi: 10.1088/0960-1317/18/6/065002.
Torrents A, Azgin K, Godfrey S W, Topalli E S, Akin T, Valdevit L. MEMS resonant load cells for micro-mechanical test frames: feasibility study and optimal design. J Micromech Microeng, 2010; 20(12): 125004. doi: 10.1088/0960-1317/20/12/125004.
Zamil M S, Yi H J, Haque M A, Puri V M. Characterizing microscale biological samples under tensile loading: stress-strain behavior of cell wall fragment of onion outer epidermis. American Journal of Botany, 2013; 100(6): 1105–1115.
Cardenas-Perez S, Chanona-Perez J J, Mendez-Mendez J V, Calderon-Dominguez G, Lopez-Santiago R, Arzate-Vazquez I. Nanoindentation study on apple tissue and isolated cells by atomic force microscopy, image and fractal analysis. Innovative Food Sci Emerg Technol, 2016; 34: 234–242.
Yang L, Thomason J L. Development and application of micromechanical techniques for characterising interfacial shear strength in fibre-thermoplastic composites. Polym Test, 2012; 31(7): 895–903.
Zamil M S, Yi H J, Puri V M. The mechanical properties of plant cell walls soft material at the subcellular scale: the implications of water and of the intercellular boundaries. J Mater Sci, 2015; 50(20): 6608–6623.
Bidhendi A J, Li H B, Geitmann A. Modeling the nonlinear elastic behavior of plant epidermis. Botany, 2020; 98(1): 49–64.
Bidhendi A J, Zamil M S, Geitmann A. Assembly of a simple scalable device for micromechanical testing of plant tissues. Methods in Cell Biology, 2020; 160: 327–348.
Alamar M C, Vanstreels E, Oey M L, Molto E, Nicolai B M. Micromechanical behaviour of apple tissue in tensile and compression tests: Storage conditions and cultivar effect. J Food Eng, 2008; 86(3): 324–333.
Liu Z G, Li Z G, Yue T L, Diels E, Yang Y G. Differences in the cell morphology and microfracture behaviour of tomato fruit (Solanum lycopersicum L.) tissues during ripening. Postharvest Biol Technol, 2020; 164: 111182. doi: 10.1016/j.postharvbio.2020.111182.
Pitts M J, Davis D C, Cavalieri R P. Three-point bending: An alternative method to measure tensile properties in fruit and vegetables. Postharvest Biol Technol, 2008; 48(1): 63–69.
Bruggenwirth M, Knoche M. Cell wall swelling, fracture mode, and the mechanical properties of cherry fruit skins are closely related. Planta, 2017; 245(4): 765–777.
Sterling C. Effect of low temperature on structure and firmness of apple tissue. J Food Sci, 1968; 33(6): 577–580.
Lewicki P P, Porzecka-Pawlak R. Effect of osmotic dewatering on apple tissue structure. J Food Eng, 2005; 66(1): 43–50.
Mayor L, Silva M A, Sereno A M. Microstructural changes during drying of apple slices. Drying Technol, 2005; 23(9-11): 2261–2276.
Khan A A, Vincent J F V. Compressive stiffness and fracture properties of apple and potato parenchyma. J Texture Stud, 1993; 24(4): 423–435.
Abbott J A, Lu R. Anisotropic mechanical properties of apples. Transactions of the Asae, 1996; 39(4): 1451–1459.
Liu M, Chakraborty A, Singh D, Yadav R K, Meenakshisundaram G, Reddy G V, et al. Adaptive cell segmentation and tracking for volumetric confocal microscopy images of a developing plant meristem. Molecular Plant, 2011; 4(5): 922–931.
Marcuzzo M, Quelhas P, Campilho A, Mendonca A M, Campilho A. Automated Arabidopsis plant root cell segmentation based on SVM classification and region merging. Comput Biol Med, 2009; 39(9): 785–793.
Chau Z H, Paranawithana I, Yang L, Tan U, editors. Plant cell segmentation with adaptive thresholding. In Proceedings of the 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Stuttgart-Germany, 2018; pp.108–113.
Grotte M, Duprat F, Pietri E, Loonis D. Young's modulus, Poisson's ratio, and Lame's coefficients of Golden Delicious apple. Int J Food Prop, 2002; 5(2): 333–349.
Shirvani M, Ghanbarian D, Ghasemi-Varnamkhasti M. Measurement and evaluation of the apparent modulus of elasticity of apple based on Hooke's, Hertz's and Boussinesq's theories. Measurement, 2014; 54: 133–139.
Li Z G, Li P P, Yang H L, Liu J Z, Xu Y F. Mechanical properties of tomato exocarp, mesocarp and locular gel tissues. J Food Eng, 2012; 111(1): 82–91.
Scanlon M G, Long A E. Fracture strengths of potato tissue under compression and tension at 2 rates of loading. Food Res Int, 1995; 28(4): 397–402.
Vanstreels E, Alamar A C, Verlinden B E, Enninghorst A, Loodts J K A, Tijskens E, et al. Micromechanical behaviour of onion epidermal tissue. Postharvest Biol Technol, 2005; 37(2): 163–173.
Jarvis M C, Briggs S P H, Knox J P. Intercellular adhesion and cell separation in plants. Plant Cell and Environment, 2003; 26(7): 977–989.
Ho Q T, Verboven P, Verlinden B E, Lammertyn J, Vandewalle S, Nicolai B M. A continuum model for metabolic gas exchange in pear fruit. PLoS Comput Biol, 2008; 4(3): e1000023. doi: 10.1371/journal.pcbi.1000023.
Rahman M M, Gu Y T, Karim M A. Development of realistic food microstructure considering the structural heterogeneity of cells and intercellular space. Food Structure-Netherlands, 2018; 15: 9–16.
Nieto A B, Salvatori D M, Castro M A, Alzamora S M. Structural changes in apple tissue during glucose and sucrose osmotic dehydration: shrinkage, porosity, density and microscopic features. J Food Eng, 2004; 61(2): 269–278.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.