Concurrent channel and spatial attention in Fully Convolutional Network for individual pig image segmentation
Abstract
Keywords: pig, image segmentation, Fully Convolutional Network (FCN), attention mechanism, channel and spatial attention
DOI: 10.25165/j.ijabe.20231601.6528
Citation: Hu Z W, Yang H, Lou T T, Yang H W. Concurrent channel and spatial attention in Fully Convolutional Network for individual pig image segmentation. Int J Agric & Biol Eng, 2023; 16(1): 232–242.
Keywords
Full Text:
PDFReferences
Guo Y Z, Zhu W X, Jiao P P, Ma C H, Yang J J. Multi-object extraction from topview group-housed pig images based on adaptive partitioning and multilevel thresholding segmentation. Biosystems Engineering, 2015; 135: 54–60.
Xu J Y, Zhou S Y, Xu A J, Ye J H, Zhao A Y. Automatic scoring of postures in grouped pigs using depth image and CNN-SVM. Computers and Electronics in Agriculture, 2022; 194: 106746. doi: 10.1016/j.compag.2022.106746.
He K, Wang D, Tong M, Zhu Z J. An improved GrabCut on multiscale features. Pattern Recognition, 2020; 103: 107292. doi: 10.1016/j. patcog.2020.107292.
Ma L, Ji B, Liu H K, Zhu W X, Li W, Zhang T. Differentiating profile based on single pig contour. Transactions of the CSAE, 2013; 29(10): 168–174. (in Chinese)
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015; 521(7553): 436–444.
Hu J, Shen L, Albanie S, Sun G, Wu E H. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020; 42(8): 2011–2023.
Huang G, Liu Z, Van Der Maaten L, Weinberger K Q. Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu: IEEE, 2017; pp.2261–2269. doi: 10.1109/CVPR.2017.243.
Li X, Wang W H, Hu X L, Yang J. Selective kernel networks. In: 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach: IEEE, 2019; pp.510–519. doi: 10.1109/CVPR.2019.00060.
Girshick R. Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), Santiago: IEEE, 2015; pp.1440–1448. doi: 10.1109/ICCV.2015.169.
Lin T Y, Goyal P, Girshick R, He K M, Dollar P. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020; 42(2): 318–327.
Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017; pp.7263–7271.
Huang Z L, Wang X G, Wei Y C, Huang L C, Shi H, Liu W Y, et al. CCNet: Criss-cross attention for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020; Early access. doi: 10.1109/TPAMI.2020.3007032.
Zhang H, Dana K, Shi J P, Zhang Z Y, Wang X G, Tyagi A, et al. Context encoding for semantic segmentation. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018; pp.7151–7160. doi: 10.1109/CVPR.2018.00747.
Bolya D, Zhou C, Xiao F Y, Lee Y J. YOLACT: Real-time instance segmentation. In: 2019 IEEE International Conference on Computer Vision (ICCV), 2019; pp.9156–9165. doi: 10.1109/ICCV.2019.00925.
Wang X L, Zhang R F, Kong T, Li L, Shen C H. SOLOv2: Dynamic and fast instance segmentation. In: 34th Conference on Neural Information Processing Systems (NeurIPS 2020), 2020; Vancouver, pp.17721–17732.
Jensen D B, Pedersen L J. Automatic counting and positioning of slaughter pigs within the pen using a convolutional neural network and video images. Computers and Electronics in Agriculture, 2021; 188: 106296. doi: 10.1016/j.compag.2021.106296.
Huang E D, Mao A X, Gan H M, Ceballos M C, Parsons T D, Xue Y J, et al. Center clustering network improves piglet counting under occlusion. Computers and Electronics in Agriculture, 2021; 189: 106417. doi: 10.1016/j.compag.2021.106417.
Marsot M, Mei J Q, Shan X C, Ye L Y, Feng P, Yan X J, et al. An adaptive pig face recognition approach using Convolutional Neural Networks. Computers and Electronics in Agriculture, 2020; 173: 105386. doi: 10.1016/j.compag.2020.105386.
Wang Z Y, Liu T H. Two-stage method based on triplet margin loss for pig face recognition. Computers and Electronics in Agriculture, 2022; 194: 106737. doi: 10.1016/j.compag.2022.106737.
Hu Z W, Yan H W, Lou T T. Parallel channel and position attention-guided feature pyramid for face posture detection. Int J Agric & Biol Eng, 2022; 15(6): 222–234.
Yan H W, Hu Z W, Cui Q L. Study on feature extraction of pig face based on principal component analysis. INMATEH-Agricultural Engineering, 2022; 68(3): 333–340.
Yan H W, Liu Z Y, Cui Q L, Hu Z W, Li Y W. Detection of facial gestures of group pigs based on improved Tiny-YOLO. Transactions of the CSAE, 2019; 35(18): 169–179. (in Chinese)
Chen F E, Liang X M, Chen L H, Liu B Y, Lan Y B. Novel method for real-time detection and tracking of pig body and its different parts. Int J Agric & Biol Eng, 2020; 13(6): 144–149.
Gan H M, Ou M Q, Zhao F Y, Xu C G, Li S M, Chen C X, et al. Automated piglet tracking using a single convolutional neural network. Biosystems Engineering, 2021; 205: 48–63.
Hu Z W, Yang H, Lou T T. Instance detection of group breeding pigs using a pyramid network with dual attention feature. Transactions of the CSAE, 2021; 37(5): 166–174. (in Chinese)
Xiao D Q, Lin S C, Liu Y F, Yang Q M, Wu H L. Group-housed pigs and their body parts detection with Cascade Faster R-CNN. Int J Agric & Biol Eng, 2022; 15(3): 203–209.
Gan H M, Xu C G, Hou W H, Guo J F, Liu K, Xue Y J. Spatiotemporal graph convolutional network for automated detection and analysis of social behaviours among pre-weaning piglets. Biosystems Engineering, 2022; 217: 102–114.
Yan H W, Liu Z Y, Cui Q L, Hu Z W. Multi-target detection based on feature pyramid attention and deep convolution network for pigs. Transactions of the CSAE, 2020; 36(11): 193–202. (in Chinese)
Chen C, Zhu W X, Steibel J, Siegford J, Han J J, Norton T. Recognition of feeding behaviour of pigs and determination of feeding time of each pig by a video-based deep learning method. Computers and Electronics in Agriculture, 2020; 176: 105642. doi: 10.1016/j.compag.2020.105642.
Chen C, Zhu W X, Oczak M, Maschat K, Baumgartner J, Larsen M L V, et al. A computer vision approach for recognition of the engagement of pigs with different enrichment objects. Computers and Electronics in Agriculture, 2020; 175: 105580. doi: 10.1016/j.compag.2020.105580.
Chen C, Zhu W W, Steibel J, Siegford J, Han J J, Norton T. Classification of drinking and drinker-playing in pigs by a video-based deep learning method. Biosystems Engineering, 2020; 196: 1–14.
He H X, Qiao Y L, Li X M, Chen C Y, Zhang X F. Automatic weight measurement of pigs based on 3D images and regression network. Computers and Electronics in Agriculture, 2021; 187: 106299. doi: 10.106/j.compag.2021.106299.
Liu K, Yang H Q, Yang H, Hu Z W, Meng K. Instance segmentation of group-housed pigs based on recurrent residual attention. Journal of South China Agricultural University, 2020; 41(6): 169–178. (in Chinese)
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017; 39(4): 640–651.
Mou L C, Hua Y S, Zhu X X. A relation-augmented fully convolutional network for semantic segmentation in aerial scenes. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach: IEEE, 2019; pp.12408–12417. doi: 10.1109/CVPR.2019.01270.
Sun W H, Huang Z P, Liang M, Shao T F, Bi H Z. Cocoon image segmentation method based on fully convolutional networks. In: The Seventh Asia International Symposium on Mechatronics, 2020; 589: 832–843.
Psota E T, Mittek M, Pérez L C, Schmidt T, Mote B. Multi-pig part detection and association with a fully-convolutional network. Sensors, 2019; 19(4): 852. doi: 10.3390/s19040852.
Yang A Q, Huang H S, Zheng C, Zhu X M, Yang X F, Chen P F, et al. High-accuracy image segmentation for lactating sows using a fully convolutional network. Biosystems Engineering, 2018; 176: 36–47.
Hu Z W, Yang H, Lou T T. Extraction of pig contour based on fully convolutional networks. Journal of South China Agricultural University, 2018; 39(6): 111–119. (in Chinese)
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv, 2014; arXiv: 1409.1556.
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, 2015; pp.234–241.
Yang A Q, Huang H S, Zhu X M, Yang X F, Chen P F, Li S M, et al. Automatic recognition of sow nursing behaviour using deep learning-based segmentation and spatial and temporal features. Biosystems Engineering, 2018; 175: 133–145.
Yang A Q, Huang H S, Yang X F, Li S M, Chen C, Gan H, et al. Automated video analysis of sow nursing behavior based on fully convolutional network and oriented optical flow. Computers and Electronics in Agriculture, 2019; 167: 105048. doi: 10.1016/j.compag. 2019.105048.
Hu Z W, Yang H, Lou T T. Dual attention-guided feature pyramid network for instance segmentation of group pigs. Computers and Electronics in Agriculture, 2021; 186: 106140. doi: 10.1016/j.compag. 2021.106140.
He K M, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), 2017; pp.2980–2988. doi: 10.1109/ICCV.2017.322.
Cai Z W, Vasconcelos N. Cascade R-CNN: Delving into high quality object detection. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt lake: IEEE, 2018; pp.6154-6162. doi: 10.1109/CVPR.2018.00644.
Chen K, Pang J M, Wang J Q, Xiong Y, Li X X, Sun S Y, et al. Hybrid task cascade for instance segmentation. In: 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach: IEEE, 2019; pp.4969–4978. doi: 10.1109/CVPR.2019.00511.
Tu S Q, Yuan W J, Liang Y, Wang F, Wan H. Automatic detection and segmentation for group-housed pigs based on PigMS R-CNN. Sensors, 2021; 21(9): 3251. doi: 10.3390/s21093251.
Navaneeth B, Singh B, Chellappa R, Davis L S. Soft-NMS--improving object detection with one line of code. In: 2017 IEEE International Conference on Computer Vision (ICCV), 2017; pp.5562–5570. doi: 10.1109/ICCV.2017.593.
Fu J, Liu J, Tian H J, Fang Z W, Lu H Q. Dual attention network for scene segmentation. In: 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019; pp.3146–3154.
Roy A G, Navab N, Wachinger C. Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In: 2018 International Conference on Medical Image Computing and Computer-assisted Intervention, 2018; pp.421–429.
Woo S, Park J, Lee J Y, Kweon I S. CBAM: Convolutional block attention module. In: The European Conference on Computer Vision (ECCV), 2018; pp.3–19.
Chaurasia A, Culurciello E. Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP), Petersburg: IEEE, 2017; pp.1–4.
Kingma D P, Ba J. Adam: A method for stochastic optimization. arXiv, 2014; arXiv: 1412.6980.
Deng J, Dong W, Socher R, Li L J, Li K, Li F F. Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami: IEEE, 2009; pp.248-255. doi: 10.1109/CVPR.2009.5206848.
Milletari F, Navab N, Ahmadi S A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth International Conference on 3D Vision (3DV), Stanford: IEEE, 2016; pp.565–571. doi: 10.1109/3DV.2016.79.
Sandler M, Howard A, Zhu M L, Zhmoginov A, Chen L C. Mobilenetv2: Inverted residuals and linear bottlenecks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake: IEEE, 2018; pp.4510–4520. doi: 10.1109/CVPR.2018.00474.
He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016; pp.770–778. doi: 10.1109/ CVPR.2016.90.
Xie S N, Girshick R, Dollár P, Tu Z W, He K M. Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu: IEEE, 2017; pp.5987–5995.
Lin T Y, Dollár P, Girshick R, He K M, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu: IEEE, 2017; pp.936–944. doi: 10.1109/CVPR.2017.106.
Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017; pp.2881–2890.
Park J, Woo S, Lee J Y, Kweon I S. BAM: Bottleneck attention module. arXiv, 2018; arXiv:1807.06514.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.