Enhanced Mask R-CNN for herd segmentation
Abstract
Keywords: livestock farming, image segmentation, mask R-CNN, herd, enhancement
DOI: 10.25165/j.ijabe.20211404.6398
Citation: Bello R W, Mohamed A S A, Talib A Z. Enhanced Mask R-CNN for herd segmentation. Int J Agric & Biol Eng, 2021; 14(4): 238–244.
Keywords
Full Text:
PDFReferences
FAO. The future of livestock in Nigeria: Opportunities and challenges in the face of uncertainty. Food and Agriculture Organization of the United Nations Rome, 2019; 46p.
Bello R, Talıb A, Mohamed A. Deep learning-based Architectures for recognition of cow using cow nose image pattern. Gazi University Journal of Science, 2020; 33(3): 831–844.
Bello R W, Olubummo D A, Seiyaboh Z, Enuma O C, Talib A Z, Mohamed A S A. Cattle identification: the history of nose prints approach in brief. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2020; 594(1): 1–9.
Shao W, Kawakami R, Yoshihashi R, You S, Kawase H, Naemura T. Cattle detection and counting in UAV images based on convolutional neural networks. International Journal of Remote Sensing, 2020; 41(1): 31–52.
Mao Y, He D, Song H. Automatic detection of ruminant cows’ mouth area during rumination based on machine vision and video analysis technology. Int J Agric & Biol Eng, 2019; 12(1): 186–191.
He D, Liu D, Zhao K. Review of perceiving animal information and behavior in precision livestock farming. Transaction of the CSAM, 2016; 47: 231–244. (in Chinese)
Bos J M, Bovenkerk B, Feindt P H, Van Dam Y K. The quantified animal: Precision livestock farming and the ethical implications of objectification. Food Ethics, 2018; 2: 77–92.
Xudong Z, Xi K, Ningning F, Gang L. Automatic recognition of dairy cow mastitis from thermal images by a deep learning detector. Computers and Electronics in Agriculture, 2020; 178: 1–11.
Gomes R A, Monteiro G R, Assis G J F, Busato K C, Ladeira M M,
Chizzotti M L. Estimating body weight and body composition of beef cattle trough digital image analysis. Journal of Animal Science, 2016; 94(12): 5414–5422.
Bello R W, Abubakar S. Development of a software package for cattle identification in Nigeria. J. Appl. Sci. Environ. Manag., 2019; 23(10): 1825–1828.
Hansen M F, Smith M L, Smith L N, Jabbar K A, Forbes D. Automated monitoring of dairy cow body condition, mobility and weight using a single 3d video capture device. Comput. Ind, 2018; 98: 14–22.
Zhou C, Lin K, Xu D, Liu J, Zhang S, Sun C, et al. Method for segmentation of overlapping fish images in aquaculture. Int J Agric & Biol Eng, 2019; 12(6): 135–142.
Xiao D, Feng A, Liu J. Detection and tracking of pigs in natural environments based on video analysis. Int J Agric & Biol Eng, 2019; 12(4): 116–126.
Tebug S F, Missohou A, Sourokou S S, Juga J, Poole E J, Tapio M, et al. Using body measurements to estimate live weight of dairy cattle in low-input systems in Senegal. J. Appl. Anim. Res, 2018; 46: 87–93.
Chen F E, Liang X M, Chen L H, Liu B Y, Lan Y B. Novel method for real-time detection and tracking of pig body and its different parts. Int J Agric & Biol Eng, 2020; 13(6): 144-149.
Liu H, Reibman A R, Boerman J P. A cow structural model for video analytics of cow health. 2020; arXiv pre-print. arXiv:2003.05903, 2020; 1–13.
Ter-Sarkisov A, Ross R, Kelleher J, Earley B, Keane M. Beef cattle instance segmentation using fully convolutional neural network. 2018; arXiv pre-print. arXiv:1807.01972, 2018; 1–11.
Lyu S, Noguchi N, Ospina R, Kishima Y. Development of phenotyping system using low altitude UAV imagery and deep learning. Int J Agric & Biol Eng, 2021; 14(1): 207–215.
Bello R W, Talib A Z, Mohamed A S A, Olubummo D A, Otobo F N. Image-based individual cow recognition using body patterns. International Journal of Advanced Computer Science and Applications, 2020; 11(3): 92–98.
Salau J, Krieter J. Instance segmentation with Mask R-CNN applied to loose-housed dairy cows in a multi-camera setting. Animals, 2020; 10(12): 1–19.
Bello R W, Talib A Z H, Mohamed A S A B. Deep belief network approach for recognition of cow using cow nose image pattern. Walailak Journal of Science and Technology, 2021; 18(5): 1–14.
He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, Venice-Italy, 2017; pp.2961–2969. doi: 10.1109/TPAMI.2018.2844175.
Li K, Hariharan B, Malik J. Iterative instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016; pp.3659–3667. doi: 10.1109/CVPR.2016.398.
Zhang H, Tian Y, Wang K, Zhang W, Wang F Y. Mask SSD: An effective single-stage approach to object instance segmentation. IEEE Transactions on Image Processing, 2019; 29(1): 2078–2093.
Pinheiro P O, Collobert R, Dollár P. Learning to segment object candidates. 2015; arXiv pre-print. arXiv:1506.06204.
Pinheiro P O, Lin T Y, Collobert R, Dollár P. Learning to refine object segments. 2016; arXiv pre-print. arXiv:1603.08695v2, 2016; 1–18.
Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE transactions on pattern analysis and machine intelligence, 2016; 39(6): 1137–1149
Girshick R, Donahue J, Darrell T, Malik J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell, 2015; 38: 142–158.
Girshick R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago-Chile, 2015; 1440–1448.
Bello R W, Mohamed A S A, Talib A Z. Contour extraction of individual cattle from an image using enhanced Mask R-CNN instance segmentation method. IEEE Access, 2021; 9: 56984–57000.
Chen L C, Hermans A, Papandreou G, Schroff F, Wang P, Adam H. Masklab: Instance segmentation by refining object detection with semantic and direction features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018; pp.4013–4022. doi: 10.1109/CVPR.2018.00422.
Zhao K, Kang J, Jung J, Sohn G. Building extraction from satellite images using mask R-CNN with building boundary regularization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018; pp.247–251. doi: 10.1109/CVPR.2018.00422.
Russell B C, Torralba A, Murphy K P, Freeman W T. Labelme: A database and web-based tool for image annotation. Int. J. Comput. Vision, 2008; 77: 157–173.
Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft coco: Common objects in context. In: European Conference on Computer Vision. Springer, 2014; pp.740–755. doi: 10.1007/978-3-319-10602-1_48.
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. Tensorflow: A system for large-scale machine learning. In 12th Symposium on Operating Systems Design and Implementation, 2016; pp.265–283.
Shelhamer E, Long J, Darrell T. Fully convolutional networks for
semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017; 39(4): 640–651.
Redmon J, Farhadi A. YOLO9000: better, faster, stronger. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017; pp.6517– 6525. doi: 10.1109/CVPR.2017.690.
Dai J, He K, Sun J. Instance-aware semantic segmentation via multi-task network cascades. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016; pp.3150–315. doi: 10.1109/CVPR.2016.343.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2015; arXiv pre-print. arXiv:1409.1556v6.
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.