Autonomous detection of crop rows based on adaptive multi-ROI in maize fields
Abstract
Keywords: machine vision, crop rows detection, navigation, multi-ROI
DOI: 10.25165/j.ijabe.20211404.6315
Citation: Zhou Y, Yang Y, Zhang B L, Wen X, Yue X, Chen L Q. Autonomous detection of crop rows based on adaptive multi-ROI in maize fields. Int J Agric & Biol Eng, 2021; 14(4): 217–225.
Keywords
Full Text:
PDFReferences
Cervantes-Godoy D, Dewbre J. Economic importance of agriculture for poverty reduction. OECD Food, Agriculture and Fisheries Working Papers No. 23, IECD Publishing, 2010. doi: 10.1787/5kmmv9s20944-en.
Bonadies S, Gadsden S A. An overview of autonomous crop row navigation strategies for unmanned ground vehicles. Engineering in Agriculture, Environment and Food, 2019; 12(1): 24–31.
Yin X, Wang Y X, Chen Y L, Jin C Q, Du J. Development of autonomous navigation controller for agricultural vehicles. Int J Agric & Biol Eng, 2020; 13(4): 70–76.
Li Z, Chen L, Zheng Q, Dou X, Yang L. Control of a path following caterpillar robot based on a sliding mode variable structure algorithm. Biosyst Eng, 2019; 186: 293–306.
Liu Y, Noguchi N. Development of an unmanned surface vehicle for autonomous navigation in a paddy field. Engineering in Agriculture, Environment and Food, 2016; 9(1): 21–26.
Bakker T, Asselt K, Bontsema J, Müller J, Straten G. Systematic design of an autonomous platform for robotic weeding. J Terramechanics, 2010; 47(2): 63–73.
Bengochea-Guevara J M, Conesa-Munoz J, Andujar D, Ribeiro A. Merge fuzzy visual servoing and GPS-based planning to obtain a proper navigation behavior for a small crop-inspection robot. Sensors (Basel), 2016; 16(3): 276. doi: 10.3390/s16030276.
Feng J, Li Z, Yang W, Han X, Zhang X. Detection navigation baseline in row-following operation of maize weeder based on axis extraction. Int J Agric & Biol Eng, 2020; 13(5): 181–186.
Rabab S, Badenhorst P, Chen Y-P, Daetwyler H D. A template-free machine vision-based crop row detection algorithm. Precis Agric, 2020; 22(1): 124–153.
Keicher R, Seufert H. Automatic guidance for agricultural vehicles in Europe. Comput & Electron Agr, 2000; 25(1-2):169–194.
Hough P V C. A method and means for recognizing complex patterns. 1962; US Patent 3069654.
Rovira-Más F, Zhang Q, Reid J F, Will J D. Hough-transform-based vision algorithm for crop row detection of an automated agricultural vehicle. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2005; 219(8): 999–1010.
Bakker T, Wouters H, van Asselt K, Bontsema J, Tang L, Müller J, et al. A vision based row detection system for sugar beet. Comput & Electron Agr, 2008; 60(1): 87–95.
Ji R, Qi L. Crop-row detection algorithm based on Random Hough Transformation. Math & Comput Model, 2011; 54(3-4): 1016–1020.
Xu L, Oja E. Randomized Hough Transform (RHT): Basic mechanisms, algorithms, and computational complexities. CVGIP: Image Understanding, 1993; 57(2): 131–154.
Okamoto H, Hata S, Kataoka T, Terawaki M. Automatic weeding cultivator using crop-row detector. IFAC Proceedings Volumes, 2001; 34(19): 117–122.
Sogaard H T, Olsen H J. Determination of crop rows by image analysis without segmentation. Comput & Electron Agr, 2003; 38(2): 141–158.
Si Y, Jiang G, Liu G, Gao R, Liu Z. Early stage crop rows detection based on least square method. Transactions of the Chinese Society of Agricultural Machinery, 2010; 41(7): 163–167, 185. (in Chinese)
Ospina R, Noguchi N. Simultaneous mapping and crop row detection by fusing data from wide angle and telephoto images. Comput & Electron Agr, 2019; 162: 602–612.
Pla F, Sanchiz J M, Marchant J A, Brivot R. Building perspective models to guide a row crop navigation vehicle. Image & Vision Comput, 1997; 15(6): 465–470.
Jiang G, Wang X, Wang Z, Liu H. Wheat rows detection at the early growth stage based on Hough transform and vanishing point. Comput & Electron Agr, 2016; 123(45): 211–223.
Zhang X, Li X, Zhang B, Zhou J, Tian G, Xiong Y, et al. Automated robust crop-row detection in maize fields based on position clustering algorithm and shortest path method. Comput & Electron Agr, 2018; 154: 165–175.
Jiang G, Wang Z, Liu H. Automatic detection of crop rows based on multi-ROIs. Expert Syst Appl, 2015; 42(5): 2429–2441.
García-Santillán I D, Montalvo M, Guerrero J M, Pajares G. Automatic detection of curved and straight crop rows from images in maize fields. Biosyst Eng, 2017; 156: 61–79.
Li J, Zhu R, Chen B. Image detection and verification of visual navigation route during cotton field management period. Int J Agric & Biol Eng, 2018; 11(6): 159–165.
Montalvo M, Pajares G, Guerrero J M, Romeo J, Guijarro M, Ribeiro A, et al. Automatic detection of crop rows in maize fields with high weeds pressure. Expert Syst Appl, 2012; 39(15): 11889–11897.
Evert F K V, Van Der Heijden G W A M, Lotz L A P, Polder G, Lamaker A, De Jong A, et al. A mobile field robot with vision-based detection of volunteer potato plants in a corn crop. Weed Technol, 2017; 20(4): 853–861.
Burgos-Artizzu X P, Ribeiro A, Guijarro M, Pajares G. Real-time image processing for crop/weed discrimination in maize fields. Comput & Electron Agr, 2011; 75(2): 337–346.
Sainz-Costa N, Ribeiro A, Burgos-Artizzu X P, Guijarro M, Pajares G. Mapping wide row crops with video sequences acquired from a tractor moving at treatment speed. Sensors (Basel), 2011; 11(7): 7095–109.
Woebbecke D M, Meyer G E, Von Bargen K, Mortensen D A. Shape features for identifying young weeds using image analysis. Transactions of the ASABE, 1995; 38(1): 271–281.
Otsu N. A threshold selection method from gray-level histograms. IEEE T Syst Man & Cy, 2007; 9(1): 62–66.
Wilcoxon F. Individual comparisons by ranking methods. Biometrics, 1945; 1(6): 80–83.
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.