Real-time grain breakage sensing for rice combine harvesters using machine vision technology
Abstract
Keywords: combine harvester, breakage rate monitoring, sampling box structure, machine vision, color classification
DOI: 10.25165/j.ijabe.20201303.5478
Citation: Chen J, Lian Y, Zou R, Zhang S, Ning X B, Han M N. Real-time grain breakage sensing for rice combine harvesters using machine vision technology. Int J Agric & Biol Eng, 2020; 13(3): 194–199.
Keywords
Full Text:
PDFReferences
Craessaerts G, Saeys W, Missotten B, De Baerdemaeker J. A genetic input selection methodology for identification of the cleaning process on a combine harvester, part 1: Selection of relevant input variables for identification of the sieve losses. Biosystems Engineering, 2007; 98(2): 166–175.
Liang Z W, Li Y M, Xu L Z, Zhao Z, Tang Z. Optimum design of an array structure for the grain loss sensor to upgrade its resolution for harvesting rice in a combine harvester. Biosystems Engineering, 2017; 157: 24–34.
Myhan R, Jachimczyk E. Grain separation in a straw walker unit of a combine harvester: Process model. Biosystems Engineering, 2016; 145: 93–107.
Lashgari M, Mobli H, Omid M, Alimardani R, Mohtasebi S S. Qualitative analysis of wheat grain damage during harvesting with John Deere combine harvester. International Journal of Agriculture and Biology (Pakistan), 2008; 10(2): 201–204.
Maertens K, Ramon H, De Baerdemaeker J. An on-the-go monitoring algorithm for separation processes in combine harvesters. Computers and Electronics in Agriculture, 2004; 43(3): 197–207.
Jahari M, Yamamoto K, Miyamoto M, Kondo N, Ogawa Y, Suzuki T, et al. Double lighting machine vision system to monitor harvested paddy grain quality during head-feeding combine harvester operation. Machines, 2015; 3(4): 352–363.
Maertens K, Reyns P, De Baerdemaeker J. On-line measurement of grain quality with NIR technology. Transactions of the ASAE, 2004; 47(4): 1135–1140.
Georg H, Guth N, Bockisch F J. Machine vision for the automatic measurement of broken grain fraction 1. IFAC Control Applications in Post-Harvest and Proceeding Technology, 1995; 28(6): 139–142.
Jahari M, Yamamoto K, Miyamoto M, Kondo N, Ogawa Y, Suzuki T, et al. Monitoring harvested paddy during combine harvesting using a machine vision-Double lighting system. Engineering in Agriculture Environment & Food, 2016; 10(2): 140–149.
Lashgari M, Mobli H, Omid M, Alimardani R, Mohtasebi S S. Qualitative analysis of wheat grain damage during harvesting with john deere combine harvester. International Journal of Agriculture & Biology, 2008; 10(2): 201–204.
Chen J, Lian Y, Li Y M, Wang Y H, Liu X Y, Gu Y. Design of sampling device for rice grain impurity sensor in grain-bin of combine harvester. Transactions of the CSAE, 2019; 35(5): 18–25. (in Chinese)
Li N Y, Ye J W, Ji Y, Ling H B, Yu J Y. Saliency detection on light field. IEEE Conference on Computer Vision and Pattern Recognition,
Columbus: IEEE, 2014; pp. 2806–2813.
Steger C, Ulrich M, Wiedemann C. Machine vision algorithms and applications. Weinheim: Wiley-VCH, 2007; pp.12–13.
Liao K W, Lee Y T. Detection of rust defects on steel bridge coatings via digital image recognition. Automation in Construction, 2016; 71, 294–306.
Sun Z, Feng W, Zhao Q, Huang L. Brightness preserving image enhancement based on a gradient and intensity histogram. Journal of Electronic Imaging, 2015; 24(5): 053006.1–053006.11.
Domsch H, Heisig M, Witzke K. Estimation of yield zones using aerial images and yield data from a few tracks of a combine harvester. Precision Agriculture, 2008; 9(5): 321–337.
Sofu M M, Er O, Kayacan M C, Cetisli B. Design of an automatic apple sorting system using machine vision. Computers & Electronics in Agriculture, 2016; 127: 395–405.
Adriaan V D M, Auger F, Frederix S, Morel M H. Image analysis of dough development: impact of mixing parameters and wheat cultivar on the gluten phase distribution. Journal of Food Engineering, 2015; 171: 102–110.
Li N Y, Ye J W, Ji Y, Ling H B, Yu J Y. Saliency detection on light field. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014; pp.2806–2813.
Changyeun M, Giyoung K, Jongguk L, Moon K, Hyunjeong C, Byoung-Kwan C. Detection of lettuce discoloration using hyperspectral reflectance imaging. Sensors, 2015; 15(11): 29511–29534.
Shi P, Wan M, Hong J, Chen J, Zhang L. A parallel fish image processing pipeline of high-throughput chromosomal analysis. International Conference on Information Technology in Medicine & Education, IEEE, 2015; pp.337–342.
Copyright (c) 2020 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.