Pig target tracking algorithm based on multi-channel color feature fusion
Abstract
Keywords: pig tracking, color feature, correlation filter, ellipse fitting
DOI: 10.25165/j.ijabe.20201303.5346
Citation: Sun L Q, Chen S H, Liu T, Liu C H, Liu Y. Pig target tracking algorithm based on multi-channel color feature fusion. Int J Agric & Biol Eng, 2020; 13(3): 180–185.
Keywords
Full Text:
PDFReferences
Nasirahmadi A, Sturm B, Olsson A C, Jeppsson K H, Müller S, Edwards S, et al. Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and Support Vector Machine. Computers and Electronics in Agriculture, 2019; 156: 475–481.
Van der Stuyft E, Schofield C P, Randall J M, Wambacq P, Goedseels V. Development and application of computer vision systems for use in livestock production. Computers and Electronics in Agriculture, 1991; 6: 243–265.
McFarlane N J B, Schofield C P. Segmentation and tracking of piglets in images. Machine Vision and Applications, 1995; 8: 187–193.
Tillett R D, Onyango C M, Marchant J A. Using model-based image processing to track animal movements. Computers and Electronics in Agriculture, 1997; 17(2): 249–261.
Perner P. Motion tracking of animals for behavior analysis. In: Arcelli C, Cordella L P, di Baja G S (Ed.). Visual Form 2001. IWVF 2001. Lecture Notes in Computer Science, Vol. 2059, Berlin, Heidelberg: Springer, 2001; pp.779–786.
Lind N M, Vinther M, Hemmingsen R P, Hansen A K. Validation of a digital video tracking system for recording pig locomotor behaviour. Journal of Neuroscience Methods, 2005; 143(2): 123–132.
Ahrendt P, Gregersen T, Karstoft H. Development of a real-time computer vision system for tracking loose-housed pigs. Computers and Electronics in Agriculture, 2011; 76(2): 169–174.
Kashiha, M, Bahr C, Ott S, Moons C P H, Niewold T A, Ödberg, F O, et al. Automatic identification of marked pigs in a pen using image pattern recognition. Computers and Electronics in Agriculture, 2013; 93: 111–120.
Li Y Y, Sun L Q, Zou Y B, Li Y. Individual pig object detection algorithm based on Gaussian mixture model. Int J Agric & Biol Eng, 2017; 10(5): 186–193.
Sun L Q, Zou Y B, Li Y, Cai Z D, Li Y, Luo B, et al. Multi target pigs tracking loss correction algorithm based on Faster R-CNN. Int J Agric & Biol Eng, 2018; 11(5): 192–197.
Ju M, Choi Y, Seo J, Sa J, Lee S, Chung Y, et al. A Kinect-based segmentation of touching-pigs for real-time monitoring. Sensors, 2018; 18(6): 1746.
Bolme D S, Beveridge J R, Draper B A, Lui Y M. Visual object tracking using adaptive correlation filters. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Fancisco: IEEE. 2010; pp.2544–2550.
Henriques J F, Caseiro R, Martins P, Batista J. Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon A., Lazebnik S., Perona P., Sato Y., Schmid C (Ed.). Computer Vision- ECCV 2012. Lecture Notes in Computer Science, Vol. 7575, Berlin,
Heidelberg: Springer, 2012; pp.702–715.
Henriques J F, Caseiro R, Martins P, Batista J. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015; 37(3): 583–596.
Danelljan M, Shahbaz Khan F, Felsberg M, van de Weijer J. Adaptive color attributes for real-time visual tracking. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014; pp.1090–1097.
Li Y, Zhu J K. A scale adaptive kernel correlation filter tracker with feature integration. In: Agapito L, Bronstein M, Rother C (Ed.). Computer Vision-ECCV 2014 Workshops. Lecture Notes in Computer Science, Vol. 8926, Cham: Springer, 2014; pp.254–265.
Danelljan M, Häger G, Shahbaz Khan F, Felsberg M. Accurate scale estimation for robust visual tracking. In: Proceeding of the British Machine Vision Conference, Nottingham: BMVA Press, 2014.
Danelljan M, Häger G, Shahbaz Khan F, Felsberg M. Discriminative scale space tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017; 39(8): 1561–1575.
Danelljan M, Hager G, Shahbaz Khan F, Felsberg M. Convolutional features for correlation filter based visual tracking. In: The IEEE International Conference on Computer Vision (ICCV) Workshops, 2015; pp.58–66.
Danelljan M, Robinson A, Khan F S, Felsberg M. Beyond correlation filters: Learning continuous convolution operators for visual tracking. In: Leibe B, Matas J, Sebe N, Welling M (Ed.). Computer Vision-ECCV2016. Lecture Notes in Computer Science, Vol. 9909, Cham: Springer, 2016; pp.472–488.
Danelljan M, Bhat G, Shahbaz Khan F, Felsberg M. Eco: Efficient convolution operators for tracking (CVPR). In: The IEEE Conference on Computer Vision and Pattern Recognition, 2017; pp.6638–6646.
Bertinetto L, Valmadre J, Henriques J F, Vedaldi A, Torr P H S. Fully-convolutional siamese networks for object tracking. In: Hua G, Jégou H (Ed.). Computer Vision-ECCV2016 Workshops. Lecture Notes in Computer Science, Vol. 9914, Cham: Springer, 2016; pp.850–865.
Valmadre J, Bertinetto L, Henriques J, Vedaldi A, Torr P H S. End-to-end representation learning for correlation filter based tracking. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017; pp.2805–2813.
Zhang Y H, Wang L J, Qi J Q, Wang D, Feng M Y, Lu H C. Structured siamese network for real-time visual tracking. In: The European Conference on Computer Vision (ECCV), 2018; pp.351–366.
Li B, Yan J J, Wu W, Zhu Z, Hu X L. High performance visual tracking with siamese region proposal network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. pp. 8971–8980.
Li P X, Wang D, Wang L J, Lu H C. Deep visual tracking: Review and experimental comparison. Pattern Recognition, 2018; 76: 323–338.
Wu Y, Lim J, Yang M H. Online object tracking: A benchmark. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013. pp.2411–2418.
Wu Y, Lim J, Yang M H. Object Tracking Benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015; 37: 1834–1848.
Flannery B P, Press W H, Teukolsky S A. Numerical recipes in C. New York: Press Syndicate of the University of Cambridge, 1992; 24: 78.
Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003; 25(5): 564–575.
Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 1979; 9(1): 62–66.
Copyright (c) 2020 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.