Influence analysis of sprinkler irrigation effectiveness using ANFIS

Zhongwei Liang, Xiaochu Liu, Guilin Wen, Xuefeng Yuan

Abstract


In order to improve sprinkler irrigation quality and promote actual irrigation efficiency, the influence analysis of sprinkler irrigation effectiveness (SIE) using ANFIS (Adaptive Neural Fuzzy Inference System) was implemented to balance moisture infiltration and water redistribution in soil field. Firstly, using a detailed description of governing equations proposed for sprinkler irrigation flow, the theoretical foundation and mathematical model of irrigation effectiveness can be established; Secondly, based on a complete preparation of experimental irrigation conditions, a series of calibration indexes quantifying SIE for sprinkler irrigation quality and infiltration efficiency were proposed; Then thirdly, a novel ANFIS system was designed and introduced to evaluate these key effectiveness indexes in actual working operations, so that a series of detailed influence analysis and comprehensive infiltration assessment focusing on sprinkler irrigation effectiveness could be achieved afterwards, which result to the realization of better infiltration equilibrium and higher water redistribution efficiency in actual irrigation test. Therefore, the qualification of sprinkler irrigation effectiveness was achieved, and in addition, the moisture infiltration improvement and soil moisture uniformity were facilitated also in return.
Keywords: influence, analysis, sprinkler irrigation, effectiveness, ANFIS
DOI: 10.25165/j.ijabe.20191205.5123

Citation: Liang Z W, Liu X C, Wen G L, Yuan X F. Influence analysis of sprinkler irrigation effectiveness using ANFIS. Int J Agric & Biol Eng, 2019; 12(5): 135–148.

Keywords


influence, analysis, sprinkler irrigation, effectiveness, ANFIS

Full Text:

PDF

References


Li M, Fu Q, Singh V P, Liu D. An interval multi-objective programming model for irrigation water allocation under uncertainty. Agric.Water Manag., 2018; 196(31): 24–36.

Dai Z, Li Y. A multistage irrigation water allocation model for agricultural land-use planning under uncertainty. Agric.Water Manag., 2013; 129(6): 69–79.

Guo P, Chen X, Li M, Li J. Fuzzy chance-constrained linear fractional programming approach for optimal water allocation. Stoch. Env. Res. Risk A., 2014; 28(6): 1601–1612.

Li M, Guo P. A multi-objective optimal allocation model for irrigation water resources under multiple uncertainties. Appl. Math. Model., 2014; 38 (19-20): 4897–4911.

Liu X, Liang Z, Wen G, Yuan X. Waterjet machining and research developments: a review. Int. J. Adv. Manuf. Technol., 2018; 102(5): 1257–1335.

Ward F A, Crawford T L. Economic performance of irrigation capacity development to adapt to climate in the American Southwest. J. Hydrol., 2016; 540(9): 757–773.

Habteyes B G, El-bardisy H A, Amer S A, Schneider V R, Ward F A. Mutually beneficial and sustainable management of Ethiopian and Egyptian dams in the Nile Basin. J. Hydrol., 2015; 529(10): 1235–1246.

Hellín H N, Rincon J M, Miguel R D, Valles F S, Sánchez R T. A decision support system for managing irrigation in agriculture. Comput. Electron. Agr., 2016; 124(c): 121–131

Opan M. Irrigation-energy management using a DPSA-based optimization model in the Ceyhan basin of Turkey. J. Hydrol., 2010; 385(1): 353–360.

Liang Z, Liu X. Fuzzy performance between surface fitting and energy distribution in turbulence runner. Sci. World J., 2012; 25(10): 408949

Robles J M, Botía P, Pérez J G. Subsurface drip irrigation affects trunk diameter fluctuations inlemon trees, in comparison with surface drip irrigation. Agric.Water Manag., 2016; 165(2): 11–21

Wakchaure G C, Minhas P S, Ratnakumar P, Choudhary R L. Optimising supplemental irrigation for wheat and the impact of plant bio-regulators in a semi-arid region of Deccan Plateau in India. Agric.Water Manag., 2016; 172(2016): 9–17

Reca J, Torrente C, Luque L, Martinez J. Feasibility analysis of a stand alone direct pumping photo voltaic system for irrigation in Mediterranean greenhouses. Renew. Energy, 2016; 85(1): 1143–1154

Crespo O, Bergez J E, Garcia F. Multiobjective optimization subject to uncertainty: Application to irrigation strategy management. Comput. Electron. Agr, 2010; 74(1): 145–154

Barradas J M, Matula S, Dolezal F. A decision support system-fertigation simulator (DSS-FS) for design and optimization of sprinkler and drip irrigation systems. Comput. Electron. Agr, 2012; 86(6): 111–119

Jiang L, Shang S, Yang Y, Guan H. Mapping inter annual variability of maize cover in a large irrigation district using a vegetation index-phenological index classifier. Comput. Electron. Agr, 2016; 123(4): 351–361.

Nieto P, Gonzalo E G, Arbat G, Ros M D, Cartagena F R, Bargués J P. A new evaluateive model for the filtered volume and outlet parameters in micro-irrigation sand filters fed with effluents using the hybrid PSO-SVM- based approach. Comput. Electron. Agr, 2016; 125(7): 74–80.

Nasiakou A, Vavalis M, Zimeris D. Smart energy for smart irrigation. Comput. Electron. Agr, 2016; 129(11): 74–83.

Linker R, Sylaios G. Efficient model-based sub-optimal irrigation scheduling using imperfect weather forecasts. Comput. Electron. Agr., 2016; 130(11): 118–127

Campana P E, Li H, Zhang J, Zhang R, Liu J, Yan J. Economic optimization of photovoltaic water pumping systems for irrigation. Energy Convers. Manag., 2015; 95(5): 32–41.

Kovacs K F, Mancini M, West G. Landscape irrigation management for maintaining an aquifer and economic returns. J. Environ. Manage., 2015; 160(7): 271–282.

Liang Z, Liu X, Zhou J, Liao S. Video tracking for high- similarity drug tablets based on reflective energy intensity matrix and fuzzy recognition system. Proc IMechE Part H: J Eng. Med., 2016; 230(3): 211–229.

Evan M, Ru W, Xia X. Energy-water optimization model incorporating rooftop water harvesting for lawn irrigation. Appl. Energy, 2015; 160(12): 521–531.

Campana P E, Leduc S, Kim M, Olsson A, Zhang J, Liu J, et al. Suitable and optimal locations for implementing photovoltaic water pumping systems for grassland irrigation in China. Appl. Energy, 2017; 185(1):1879–1889.

Garga N K, Dadhich S M. Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation. Agric.Water Manag., 2014; 140(1): 1–13.

Koech R K, Smith R J, Gillies M H. Evaluating the performance of a real-time optimisation system for furrow irrigation. Agric.Water Manag., 2014; 142(142):77–87.

Hellín H N, Sánchez R T, Valles F S, Pérez C A, Riquelme J A, Miguel R D. A wireless sensors architecture for efficient irrigation water management. Agric.Water Manag., 2015; 151(3): 64–74.

Esfahani L H, Rua A T, McKee M. Assessment of optimal irrigation water allocation for pressurized irrigation system using water balance approach, learning machines,and remotely sensed data. Agric.Water Manag., 2015; 153(2): 42–50.

Yang G, Guo P, Huo L, Ren C. Optimization of the irrigation water resources for Shijin irrigation district in north China. Agric. Water Manag., 2015; 158(8): 82–98.

Pascual M, Villar J M, Rufat J. Water use efficiency in peach trees over a four-years experiment on the effects of irrigation and nitrogen application. Agric.Water Manag., 2016; 164(1): 253–266.

Domingo R J, Arbonés X, Pascual A, Villar M. Interaction between water and nitrogen management in peaches for processing. Irrig. Sci., 2011; 29(4): 321–329.

Skewes P V, Cox M A, Mahadevan J W. Modelling the impact of pulsing of drip irrigation on the water and salinity dynamics in soil in relation to water uptake by an almond tree. WIT Trans. Ecol Environ., 2012; 168(19): 101–113.

Kranz W L, Evans R G, Lamm R G, Shaughnessy S A, Peters R T. A review of mechanical move sprinkler irrigation control and automation technologies. Appl. Eng. Agric. ASABE, 2012; 28 (3): 389–397.

García F, Montesinos I, Poyato P C, Díaz E R. Energy cost optimization in pressurized irrigation networks. Irrig. Sci., 2016; 34(1): 1–13.

Alison M, Nigel C H, Steven R. Simulation of irrigation control strategies for cotton using model evaluateive control within the VARI wise simulation framework. Comput. Electron. Agric., 2014; 101(5): 135–147.

Sayyadi H, Sadraddini A A, Zadeh D F, Montero J. Artificial neural networks for simulating wind effects on sprinkler distribution patterns. Span. J. Agric. Res., 2012; 10(4): 1143–1154.

Liang Z W, Tan S S, Liao S P, Liu X C. Component parameter optimization of strengthen waterjet grinding slurry with the improved ANFIS. Int. J. Adv. Manuf. Technol., 2017; 90(12): 831–855.

Xue X Y, Tu K, Qin W C, Lan Y B, Zhang H H. Drift and deposition of ultra-low altitude and low volume application in paddy field. Int. J. Agric. & Biol. Eng., 2014; 7(4): 23–28.

Zheng Y J, Yang S H, Zhao C J, Chen L P, Lan Y B, Tan Y. Modelling operation parameters of UAV on spray effects at different growth stages of corns. Int. J. Agric. & Biol. Eng., 2017; 10(3): 57–66.

Liang Z, Liao S, Wen Y, Liu X. Working parameter optimization of strengthen waterjet grinding with the improved ANFIS. J. Intell. Manuf., 2016; 30(2): 833–854.

Guo P, Wang X, Zhu H, Li M. Inexact fuzzy chance-constrained nonlinear programming approach for crop water allocation under sprinkling water variation and sustainable development. J. Water Resour. Plann. Manag., 2014; 140 (9): 5014003.

Chen S D, Lan Y B, Li J Y, Zhou Z Y, Liu A M, Mao Y D. Effect of wind field below unmanned helicopter on droplet deposition distribution of aerial spraying. Int. J. Agric. & Biol. Eng., 2017; 10(3): 67–77.

Liang Z, Liu X. Four-dimensional fuzzy relation investigation in turbulence kinetic energy distribution, surface cluster modeling, Arab. J. Sci. Eng. 2014; 39(1): 2339–2351.

Tong F F, Guo P. Simulation and optimization for crop water allocation based on crop water production functions and climate factor under uncertainty. Appl. Math. Model., 2013; 37(14-15): 7708–7716

Dukes M D. Water conservation potential of landscape irrigation smart controllers. Trans. ASABE, 2012; 55(2): 563–569.

Tsang S W, Jim C Y. Applying artificial intelligence modeling to optimize green roof irrigation. Energ. Buildings, 2016; 127(9): 360–369.

Li Z, Hao Z, Shi X, Déry S J, Li J, Chen S, Li Y. An agricultural drought index to incorporate the irrigation performance and reservoir operations: A case study in the Tarim river basin. Global Planet. Change, 2016; 143(8): 10–20.

Maia R, Silv C, Costa E. Eco-efficiency assessment in the agricultural sector: the Monte Novo irrigation perimeter, Portugal. J. Clean. Prod., 2016; 138(12): 217–228.

Vila M G, Fereres E. Combining the simulation crop model Aqua Crop with an economic model for the optimization of irrigation management at farm level. Europ. J. Agron., 2012; 36(1): 21–31.

Hou C J, Tang Y, Luo S M, Lin J T, He Y, Zhuang J J, et al. Optimization of control parameters of droplet density in citrus trees using UAVs and the Taguchi method. Int J Agric & Biol Eng, 2019; 12(4): 1–9.

Liang Z, Shan S, Liu X, Wen Y. Fuzzy evaluation of AWJ flow properties by using multi-phase flow models. Eng. Appl. Comp. Fluid, 2017; 11(1): 225–257.

Cheviron B, Vervoort R W, Albasha R, Dairon R, L Priol C, Mailhol J C. A framework to use crop models for multi-objective constrained optimization of irrigation strategies. Environ. Modell. Softw., 2016; 86(c): 145–157.

Izquiel A, Carrion P, Tarjuelo J M, Moreno M A. Optimal reservoir capacity for centre pivot irrigation water supply: Maize cultivation in Spain. Biosyst. Eng., 2015; 135(7): 61–72.

Liang Z W, Liu X C, Ye B Y, Wang Y J. Performance investigation of fitting algorithms in surface micro- topography grinding processes based on multi- dimensional fuzzy relation set, Int. J. Adv. Manuf. Technol., 2013; 67(7): 2779–2798.

Izquiel A, Ballesteros R, Tarjuelo J M, Moreno M A. Optimal reservoir sizing in on-demand irrigation networks: Application to a collective drip irrigation network in Spain. Biosyst. Eng., 2016; 147(5): 67–80.

Zhang P, Deng L, Lyu Q, He S L, Yi S L, Liu Y D, et al. Effects of citrus tree-shape and spraying height of small unmanned aerial vehicle on droplet distribution. Int J Agric & Biol Eng, 2016; 9(4): 45–52.

Liang Z W, Ye B Y. Three-dimensional fuzzy influence analysis of fitting algorithms on integrated chip topographic modeling. J. Mech. Sci. Technol., 2012; 26(10): 3177–3191.

Bekchanov M, Ringler C, Bhaduri A, Jeulan M. Optimizing irrigation efficiency improvements in the Aral Sea Basin. Water. Resour. Res., 2016; 13(1): 30–45.

Tinoco V, Willems P, Wyseure G, Cisneros F. Evaluation of reservoir operation strategies for irrigation in the Macul Basin, Ecuador. J. Hydrol.: Regional Studies., 2016; 5(c): 213–225.

Liang Z, Xie B, Liao S, Zhou J. Concentration degree evaluation of AWJ grinding effectiveness based on flow properties and the proposed ANFIS. Int. J. Adv. Manuf. Technol., 2015; 80(5): 887–905.




Copyright (c) 2019 International Journal of Agricultural and Biological Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2023-2026 Copyright IJABE Editing and Publishing Office