Inspection of maleic anhydride in starch powder using line-scan hyperspectral Raman chemical imaging technique
Abstract
Keywords: Raman spectroscopy, chemical imaging, starch, adulteration, food authentication
DOI: 10.25165/j.ijabe.20181106.4339
Citation: Qin J W, Kim M S, Chao K L, Bellato L, Schmidt W F, Cho B-K, et al. Inspection of maleic anhydride in starch powder using line-scan hyperspectral Raman chemical imaging technique. Int J Agric & Biol Eng, 2018; 11(6): 120–125.
Keywords
Full Text:
PDFReferences
Peng J, Chang M, Fang M, Liao C, Tsai C, Tseng S, et al. Incidents of major food adulteration in Taiwan between 2011 and 2015. Food Control, 2017; 72: 145–152.
Chen H, Wu C, Wu K. Determination of the maleic acid in rat urine and serum samples by isotope dilution-liquid chromatography-tandem mass spectrometry with on-line solid phase extraction. Talanta, 2015; 136: 9–14.
Xu D, Chen Y, Zhou S, Lian Y, Chen L, Lin L, et al. Determination of the total amount of maleic acid and maleic anhydride in starch and its products by high performance liquid chromatography-tandem mass spectrometry. Chin. J. Chromatogr, 2013; 31(12): 1224–1227.
Tsai C, Wu G, Kuo C, Lin Y, Chang C, Tseng S, et al. Effective extraction method through alkaline hydrolysis for the detection of starch maleate in foods. J. Food Drug Anal., 2015; 23(3): 442–446.
Su W, Sun D. Fourier transform infrared and Raman and hyperspectral imaging techniques for quality determinations of powdery foods: a review. Compr. Rev. Food Sci. Food Saf., 2018; 17(1): 104–122.
Xu L, Shi W, Cai C, Zhong W, Tu K. Rapid and nondestructive detection of multiple adulterants in kudzu starch by near infrared (NIR) spectroscopy and chemometrics. LWT Food Sci. Technol., 2015; 61(2): 590–595.
Fu H, Li H, Xu L, Yin Q, Yan T, Ni C, et al. Detection of unexpected frauds: Screening and quantification of maleic acid in cassava starch by Fourier transform near-infrared spectroscopy. Food Chem, 2017; 227: 322–328.
Almeida M R, Alves R S, Nascimbem L B L R, Stephani R, Poppi R J, de Oliveira L F C. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal. Bioanal. Chem., 2010; 397: 2693–2701.
Liu Y, Xu Y, Yan Y, Hu D, Yang L, Shen R. Application of Raman spectroscopy in structure analysis and crystallinity calculation of corn starch. Starch – Stärke, 2015; 67(7–8): 612–619.
Qin J, Chao K, Kim M S. Raman chemical imaging system for food safety and quality inspection. Trans. ASABE, 2010; 53(6): 1873–1882.
Chao K, Dhakal S, Qin J, Kim M S, Peng Y. A 1064 nm dispersive Raman spectral imaging system for food safety and quality evaluation. Appl. Sci., 2018; 8(3): 431.
Dhakal S, Chao K, Qin J, Kim M S, Chan D. Raman spectral imaging for quantitative contaminant evaluation in skim milk powder. J. Food. Meas. Charact., 2016; 10: 374–386.
Qin J, Chao K, Cho B, Peng Y, Kim M S. High-throughput Raman chemical imaging for rapid evaluation of food safety and quality. Trans. ASABE 2014; 57: 1783–1792.
Qin J, Chao K, Kim M S, Cho B. Line-scan macro-scale Raman chemical imaging for authentication of powdered foods and ingredients. Food Bioprocess Technol., 2016; 9: 113–123.
Qin J, Kim M S, Chao K, Dhakal S, Lee H, Cho B, et al. Detection and quantification of adulterants in milk powder using a high-throughput Raman chemical imaging technique. Food Addit. Contam. Part A, 2017; 34(2): 152–161.
Qin J, Kim M S, Chao K, Gonzalez M, Cho B. Quantitative detection of benzoyl peroxide in wheat flour by line-scan macro-scale Raman chemical imaging. Appl. Spectrosc., 2017; 71(11): 2469–2476.
Qin J, Kim M S, Chao K, Bellato L. Detecting maleic anhydride in starch using line-scan hyperspectral Raman chemical imaging. ASABE Annual International Meeting, Spokane, WA. USA. 2017; ASABE Paper, No. 1700398.
Zhang Z, Chen S, Liang Y. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst, 2010; 135(5): 1138–1146.
Mirone P, Chiorboli P. Infrared and Raman spectra and vibrational assignment of maleic anhydride. Spectrochim. Acta, 1962; 18: 1425–1432.
Copyright (c) 2018 International Journal of Agricultural and Biological Engineering