Automatic diagnosis of strawberry water stress status based on machine vision
Abstract
Keywords: automatic diagnosis, water stress, crop water stress index, machine vision, strawberry
DOI: 10.25165/j.ijabe.20191201.4293
Citation: Li H, Yin J, Zhang M, Sigrimis N, Gao Y, Zheng W G. Automatic diagnosis of strawberry water stress status based on machine vision. Int J Agric & Biol Eng, 2019; 12(1): 159–164.
Keywords
Full Text:
PDFReferences
Zhang Q, Pierce F J. Agricultural automation: Fundamentals and practices. CRC Press, 2013.
Evett S R. Soil water and monitoring technology. In: R. J. Lascano and R .E. Sojka, editors, Irrigation of Agricultural Crops. Agron. Monogr. 30. 2nd ed. ASA, CSSA, and SSSA, Madison, WI. pp.25–84.
Sui R, Fisher D K, Barnes E M. Soil moisture and plant canopy temperature sensing for irrigation application in cotton. Journal of Agricultural Science, 2012; 4(12): 93–105.
Raper T B, Henry C G, Espinoza L, Ismanov M, Oosterhuis D M. Response of two inexpensive commercially produced soil moisture sensors to changes in water content and soil texture. Agricultural Sciences, 2015; 6(10): 1148–1163.
Müller T, Bouleau C R, Perona P. Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds. Agricultural Water Management, 2016; 177: 54–65.
Allen R G, Pereira L S, Raes D, Smith M. Crop evapotranspiration. FAO Irrigation and Drainage Paper 56. Rome: FAO, 1999.
Jones H G. Plant water relations and implications for irrigation scheduling. Acta Horticulturae, 1990; 278: 67–76.
Idso S B, Jackson R D, Pinter P J, Reginato R J, Hatfield J L. Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 1981; 24: 45–55.
Jackson R D, Idso S B, Reginato R, Pinter P J. Canopy temperature as a drought stress indicator. Water Resources Research, 1981; 17: 1133–1138.
Jackson R D, Kustas W P, Choudhury B J. A re-examination of the crop water stress index. Irrig Sci, 1988; 9: 309–317
Jones H G, Stoll M, Santos T, de Sousa C, Chaves M M, Grant O M. Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. Journal of Experimental Botany, 2002; 53: 2249–2260.
Leinonen I, Jones H G. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. Journal of Experimental Botany, 2004; 55(401): 1423–1431.
Meron M, Tsipris J, Charitt D. Remote mapping of crop water status to assess spatial variability of crop stress. Precision Agriculture. Proceedings of the 4th European Conference on Precision Agriculture, Berlin, Germany. Wageningen: Academic Publishers, 2003; pp.405–410.
Maes W H, Baert A, Huete A R, Minchin P E H, Snelgar W P, Steppe K. A new wet reference target method for continuous infrared thermography of vegetations. Agricultural and Forest Meteorology, 2016; 226: 119–131.
Roy S, Ophori D. Estimation of crop water stress index in almond orchards using thermal aerial imagery. Journal of Spatial Hydrology, 2014; 12(1).
Bellvert J, Marsal J, Girona J, Zarco-Tejada P J. Seasonal evolution of crop water stress index in grapevine varieties determined with high-resolution remote sensing thermal imagery. Irrigation Science, 2015; 33(2): 81–93.
Bellvert J, Zarco‐Tejada P J, Marsal J, Girona J, González‐Dugo V, Fereres E. Vineyard irrigation scheduling based on airborne thermal imagery and water potential thresholds. Australian Journal of Grape and Wine Research, 2015.
Gerhards M, Rock G, Schlerf M, Udelhoven T. Water stress detection in potato plants using leaf temperature, emissivity, and reflectance. International Journal of Applied Earth Observation and Geoinformation, 2016; 53: 27–39.
Möller M, Alchanatis V, Cohen Y, Meron M, Tsipris J, Naor A, et al. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. Journal of Experimental Botany, 2007; 58(4): 827.
Raza S E A. Registration of thermal and visible light images of diseased plants using silhouette extraction in the wavelet domain. Pattern Recognition, 2015; 48(7): 2119–2128.
Kovesi P. Phase congruency detects corners and edges. In Australian Patt. Recog. Soc. Conf. DICTA. Sydney WA, 2003; pp.309–318.
Lowe D. Distinctive image features from scale-invariant key points. International Journal of Computer Vision, 2004; 60(2): 91–110.
Bay H, Ess A, Tuytelaars T, Goola L V. SURF: Speeded-Up Robust Features (SURF), Computer Vision and Image Understanding, 2008; l10(3): 346–359.
Chen F, Wang R. Fast RANSAC with preview model parameters evaluation. Journal of Software, 2005; 16(8): 1431–1437.
Copyright (c) 2018 International Journal of Agricultural and Biological Engineering