Multi target pigs tracking loss correction algorithm based on Faster R-CNN
Abstract
Keywords: object tracking, Faster-RCNN, individual pig, target occlusion
DOI: 10.25165/j.ijabe.20181105.4232
Citation: Sun L Q, Zou Y B, Li Y, Cai Z D, Li Y, Luo B, et al. Multi target pigs tracking loss correction algorithm based on Faster R-CNN. Int J Agric & Biol Eng, 2018; 11(5): 192–197.
Keywords
Full Text:
PDFReferences
Li Y Y, Sun L Q, Zou Y B, Li Y. Individual pig object detection algorithm based on Gaussian mixture model. Int J Agric & Biol Eng, 2017; 10(5): 186–193.
Yu S. Tracking algorithm based on multi-feature detection and target association of pigs on large-scale pig farms. Journal of Information & Computational Science, 2015; 12(10): 3837–3844.
Sun L, Li Z, Duan Q, Sun X, Li J. Automatic monitoring of pig excretory behavior based on motion feature. Sensor Letters, 2014; 12(3): 673–677.
Porto S M C, Arcidiacono C, Anguzza U, Cascone G. A computer vision-based system for the automatic detection of lying behavior of dairy cows in free-stall barns. Biosystems Engineering, 2013; 115(2):184–194.
Zuo S, Jin L, Chung Y, Park D. An index algorithm for tracking pigs in pigsty. International Conference on Industrial Electronics and Engineering, 2015; pp.797–804.
Sanchez-Matilla R, Poiesi F, Cavallaro A. Online multi-target tracking with strong and weak detections. European Conference on Computer Vision, 2016; pp.84–99.
Kamal A T, Bappy J, Farrell J, Roychowdhury A. Distributed multi-target tracking and data association in vision networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016; 38(7): 1397–1410.
Lecun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015; 521(7553): 436.
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. International Conference on Neural Information Processing Systems. Curran Associates Inc. 2012; pp.1097–1105.
Sun Y, Wang X, Tang X. Deeply learned face representations are sparse, selective, and robust. Computer Vision and Pattern Recognition. IEEE, 2015; pp.2892–2900.
Zhou Y C, Xu T Y, Zheng W, Deng H B. Classification and recognition approaches of tomato main organs based on DCNN. Transactions of the CSAE, 2017; 33(15): 219–226. (in Chinese)
Ma C, Huang J B, Yang X, Yang M H. Hierarchical convolutional features for visual tracking. IEEE International Conference on Computer Vision. IEEE, 2015; pp.3074–3082.
Andriyenko A, Roth S, Schindler K. An analytical formulation of global occlusion reasoning for multi-target tracking. IEEE International Conference on Computer Vision Workshops, 2011; pp.1839–1846.
Dong X, Shen J, Yu D, Wang W, Liu J, Huang H. Occlusion-Aware Real-Time Object Tracking. IEEE Transactions on Multimedia, 2017; 19(4):763–771.
Hua Y, Alahari K, Schmid C. Occlusion and motion reasoning for long-term tracking. Computer Vision – ECCV 2014. Springer International Publishing, 2014; pp.172–187.
Yang H, Alahari K, Schmid C. Online object tracking with proposal selection. IEEE International Conference on Computer Vision. IEEE, 2015; pp.3092–3100.
Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. Tech Report (v5), UC Berkeley, 2013; pp.580–587.
Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 2015; 39(6): 91–99.
Uijlings J R, Sande K E, Gevers T, Smeulders A W M. Selective search for object recognition. International Journal of Computer Vision, 2013; 104(2): 154–171.
He W, Yamashita T, Lu H, Lao S. SURF Tracking. IEEE International Conference on Computer Vision, ICCV 2009, Kyoto, Japan, September 27 - October. DBLP, 2009; pp.1586–1592.
Takita A, Ogawa S, Saji H. Vehicle motion tracking from infrared images using background subtraction method. 16th ITS World Congress and Exhibition on Intelligent Transport Systems and Services, 2009.
Han S, Mao H, Dally W J. Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. Fiber, 2015; 56(4): 3–7.
Bay H, Ess A, Tuytelaars T, Gool L V. Speeded-up robust features (SURF). Computer Vision & Image Understanding, 2008; 110(3): 346–359.
Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004; 60(2): 91–110.
Niedermeier R, Sanders P. On the manhattan-distance between points on space-filling mesh-indexings. Technical Report iratr-1996-18, Universität Karlsruhe, Informatik für Ingenieure und Naturwissenschaftler, 1996.
Abadi M. TensorFlow: Learning functions at scale. Acm Sigplan Notices, 2016; 51(9): 1–1.
Wu Y, Lim J, Yang M H. Online object tracking: A benchmark. IEEE Conference on Computer Vision and Pattern Recognition, 2013; pp.2411–2418.
Copyright (c) 2018