Design and test of stem diameter inspection spherical robot
Abstract
Keywords: stem diameter inspection, spherical robot, binocular stereo vision, Census transform
DOI: 10.25165/j.ijabe.20191202.4163
Citation: Quan L Z, Chen C, Li Y J, Qiao Y J, Xi D J, Zhang T Y, et al. Design and test of stem diameter inspection spherical robot. Int J Agric & Biol Eng, 2019; 12(2): 141–151.
Keywords
Full Text:
PDFReferences
Trejo-Perea M, Herrera-Ruiz G, Rios-Moreno J, Castaneda Miranda R, Rivas-Araiza E. Greenhouse energy consumption prediction using neural networks models. Int J Agric & Biol Eng, 2009; 11(1): 1–6.
Campillo C, Garcia MI, Daza C, Prieto M H. Study of a non-destructive method for estimating the leaf area index in vegetable crops using digital images. Hortscience, 2010; 45(10): 1459–63.
Hwang J, Shin C, Yoe H. Study on an agricultural environment monitoring server system using wireless sensor networks. Sensors, 2010; 10(12): 11189–11211.
Jesus Roldan J, Joossen G, Sanz D, del Cerro J, Barrientos A. Mini-UAV based sensory system for measuring environmental variables in greenhouses. Sensors, 2015; 15(2): 3334–3350.
Gallardo M, Thompson R B, Valdez L C, Fernandez M D. Use of stem diameter variations to detect plant water stress in tomato. Irrigation Science, 2006; 24(4): 241–55.
Meng Z, Duan A, Liu J, Zhang J. Advances on diagnosis of crop moisture content from changes in stem diameters of plants. Transactions of the CSAE, 2005; 21(2): 30–33. (in Chinese)
Intrigliolo D S, Castel J R. Continuous measurement of plant and soil water status for irrigation scheduling in plum. Irrigation Science, 2004; 23(2): 93–102.
Stao N, Hasegawa K. A computer controlled irrigation system for muskmelon using stem diameter sensor. Acta Horticulturae, 1995; 226: 91–98.
Ying Y B, Fu B Z, Jiang Y Y, Zhao Y. Application of machine vision technique to automation of agricultural production. Transactions of the CSAE, 1999; 15(3): 199–203. (in Chinese)
Takahashi T, Zhang S, Fukuchi H. Binocular stereo vision system for measuring distance of apples in orchard (Part 1) – Method due to composition of left and right images. Journal of the Japanese Society of Agricultural Machinery, 2000; 62(1): 89–99.
Takahashi T, Zhang S, Fukuchi H. Binocular stereo vision system for measuring distance of apples in orchard (Part 2) – Analysis of and solution to the correspondence problem. Journal of the Japanese Society of Agricultural Machinery, 2000; 62(3): 94–102.
Van Henten E J, Hemming J, Van Tuijl B A J. An autonomous robot for harvesting cucumbers in greenhouse. Autonomous Robots, 2002; 13: 241–258.
Xiang R, Ying Y B, Jiang H Y, Peng Y S. Localization of tomatoes based on binocular stereo vision. Transactions of the CSAE, 2012; 28(5): 161–167. (in Chinese)
Rovira-Más F, Zhang Q, Reid F. Stereo vision threedimensional terrain maps for precision agriculture. Computers and Electronics in Agriculture, 2008;60(2): 133-143.
Zhai Z, Zhu Z, Du Y, Song Z, Mao E. Multi-crop-row detection algorithm based on binocular vision. Biosystems Engineering, 2016; 150: 89–103.
Yang F Z, Liu S, Chen L P, Song H B, Wang Y J, Lan Y B. Detection method of various obstacles in farmland based on stereo vision technology. Transactions of the CSAM, 2012; 28(5): 161–167. (in Chinese)
Huang Y, Young K. Binocular image sequence analysis: Integration of stereo disparity and optic flow for improved obstacle detection and tracking. EURASIP Journal on Advances in Signal Processing, 2008; 843232. https://doi.org/10.1155/2008/843232.
Hernandez J D, Barrientos J, del Cerro J, Barrientos A, Sanz D. Moisture measurement in crops using spherical robots. Industrial Robot-an International Journal, 2013; 40(1): 59–66.
Cancar L, Sanz D, Hernandez J D, del Cerro J, Barrientos A. Precision humidity and temperature measuring in farming using newer ground mobile robots. Springer International Publishing, 2014-06-15
Bruhn F C, Kratz H, Warell J, Lagerkvist C-I, Kaznov V, Jones J A, et al. A preliminary design for a spherical inflatable microrover for planetary exploration. Acta Astronautica, 2008; 63(5-6): 618–31.
Michaud F, Lafontaine J D, Caron S A. Spherical robot for planetary surface exploration. Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space, 2001.
Seeman M, Broxvall M, Saffiotti A, Wide P. An autonomous spherical robot for security tasks. Proceedings of the 2006 IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety, 2006; pp.51–55.
Michaud F, Caron S. Roball, the Rolling Robot. Autonomous Robots, 2002; 12(2): 211–222
Quan L Z, Chen C, Zhang T Y, Qiao Y J. A Spherical robot with obstacle avoidance function for crop bottom stem inspection. China Patent, ZL201610383579.3. 2016-06-0.
Bekker G. Introduction to terrain-vehicle systems. Ann Arbor: University of Michigan Press, 1969.
Geng R Y, Zhang D L, Wang X Y, Yang Z D. New agricultural mechanics. Beijing: National Defense Industry Press, 2015. (in Chinese)
Zhou C D. Research on the key technologies of magnetic guided automated guided vehicle and applications. PhD dissertation. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
Brown M Z, Burschka D, Hager G D. Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003; 25(8): 993–1008.
Zhai Z Q, Du Y F, Zhu Z X, Lang J, Mao E R. Three-dimensional reconstruction method of farmland scene based on Rank transformation. Transactions of the CSAE, 2015; 31(20): 157–164. (in Chinese)
Copyright (c) 2019