Selection and experimental evaluation of shaking rods of canopy shaker to reduce tree damage for citrus mechanical harvesting
Abstract
Keywords: citrus harvester, shaking rod, canopy shaker, bending deformation, tree damage, fruit removal
DOI: 10.25165/j.ijabe.20181102.4126
Citation: Pu Y J, Toudeshki A, Ehsani R, Yang F Z, Abdulridha J. Selection and experimental evaluation of shaking rods of canopy shaker to reduce tree damage for citrus mechanical harvesting. Int J Agric & Biol Eng, 2018; 11(2): 48–54.
Keywords
Full Text:
PDFReferences
USDA-NASS. Citrus production forecast on 2016-17 season. Washington DC: USDA, National Agricultural Statistics Service, Florida Field Office. 2017. https://www.nass.usda.gov/Statistics_by_State/ Florida/Publications/Citrus/Citrus_Forecast/2016-17/cit0717.pdf. Accessed on [2017-09-26].
Sanders K F. Orange harvesting systems review. Biosyst Eng, 2005; 90(2): 115–125.
Torregrosa A, Orti E, Martin B, Gil J, Ortiz C. Mechanical harvesting of oranges and mandarins in Spain. Biosyst Eng, 2009; 104(1): 18–24.
Brown G K. New mechanical harvesters for the Florida citrus juice industry. Horttechnology, 2005; 15(1): 69–72.
Du X Q, Wu C Y, He L Y, Tong J H. Dynamic characteristics of dwarf Chinese hickory trees under impact excitations for mechanical fruit harvesting. Int J Agric Biol Eng, 2015; 8(1): 17–25.
Shamshiri R, Ehsani R, Maja J M, Roka F M. Determining machine efficiency parameters for a citrus canopy shaker using yield monitor data. Appl Eng Agric, 2013; 29(1): 33–41.
Sola-Guirado R R, Castro-Garcia S, Blanco-Roldan G L, Jimenez-Jimenez F, Castillo-Ruiz F J, Gil-Ribes J A. Traditional olive tree response to oil olive harvesting technologies. Biosyst Eng., 2014; 118: 186–193.
Whitney J D. Field test results with mechanical harvesting equipment in Florida oranges. Appl Eng Agric, 1999; 15(3): 205–210.
Peterson D. Mechanical harvester for process oranges. Appl Eng Agric, 1998; 14(5): 455–458.
Castro-Garcia S, Rosa U A, Gliever C J, Smith D, Burns J K, Krueger W H, et al. Video evaluation of table olive damage during harvest with a canopy shaker. Horttechnology, 2009; 19(2): 260–266.
Savary S K J U, Ehsani R, Schueller J K, Rajaraman B P. Simulation study of citrus tree canopy motion during harvesting using a canopy shaker. Trans of the ASABE, 2010; 53(5): 1373–1381.
Spann T M, Danyluk M D. Mechanical harvesting increases leaf and stem debris in loads of mechanically harvested citrus fruit. Hortscience, 2010; 45(8): 1297–1300.
Hong M Y, Rosa U A, Upadhyaya S K. Optimum operating parameters for a rotary drum shaker for harvesting jatropha curcas L. Trans of the ASABE, 2012; 55(6): 2051–2058.
Yu P C, Li C Y, Takeda F, Krewer G, Rains G, Hamrita T. Quantitative evaluation of a rotary blueberry mechanical harvester using a miniature instrumented sphere. Comput Electron Agr, 2012; 88: 25–31.
Sola-Guirado R R, Jimenez-Jimenez F, Blanco-Roldan G L, Castro-Garcia
S, Castillo-Ruiz F J, Ribes J A G. Vibration parameters assessment to develop a continuous lateral canopy shaker for mechanical harvesting of traditional olive trees. Span J Agric Res, 2016; 14(2): 1–10.
Pezzi F, Caprara C. Mechanical grape harvesting: Investigation of the transmission of vibrations. Biosyst Eng, 2009; 103(3): 281–286.
Caprara C, Pezzi F. Measuring the stresses transmitted during mechanical grape harvesting. Biosyst Eng, 2011; 110(2): 97–105.
Caprara C, Pezzi F. Evaluation of quality of harvest and mechanical aspects related to beater adjustments in mechanical grape harvesting. Trans of the ASABE, 2014; 57(4): 991–997.
Wilson W C, Coppock G E. Abscission chemical effects on shaker-catchframe harvest system performance and subsequent hamlin and pineapple orange yield. Hortscience, 1981; 16(3): 299–300.
Burns J K, Buker R S, Roka F M. Mechanical harvesting capacity in sweet orange is increased with an abscission agent. Horttechnology, 2005; 15(4): 758–765.
Burns J K, Roka F M, Li K T, Pozo L, Buker R S. Late-season 'Valencia' orange mechanical harvesting with an abscission agent and low-frequency harvesting. Hortscience, 2006; 41(3): 660–663.
Ebel R C, Burns J K, Morgan K T, Roka F. Abscission agent application and canopy shaker frequency effects on mechanical harvest efficiency of sweet orange. Hortscience, 2010;45(7): 1079–1083.
Moreno R, Torregrosa A, Molto E, Chueca P. Effect of harvesting with a trunk shaker and an abscission chemical on fruit detachment and defoliation of citrus grown under Mediterranean conditions. Span J Agric Res, 2015; 13(1): 1–12.
Chen D, Du X, Zhang Q, Whiting M, Scharf P, Wang S. Performance evaluation of mechanical cherry harvesters for fresh market grade fruits. Appl Eng Agric, 2012; 28(4): 483–489.
Gupta S K, Ehsani R, Kim N H. Optimization of a citrus canopy shaker harvesting system: Mechanistic tree damage and fruit detachment models. Trans of the ASABE, 2016; 59(4): 761–776.
Liu T H, Ehsani R, Toudeshki M, Zou X J, Wang H J. Experimental study of vibrational acceleration spread and comparison using three citrus canopy shaker shaking tines. Shock & Vibration, 2017; 1: 1–9.
Cardarelli F. Materials handbook. A concise desktop Reference. 2nd Edition. In: Polymers and Elastomers. Harbin: Harbin Institute of Technology Press, 2008; pp. 694–726.
Beer F P, Johnston E R, Dewolf J T, Mazurek D F. Mechanics of materials. 6th Edition. In: Deflection of Beams. Beijing: China Machine Press, 2015; pp.500–581. (in Chinese)
Savary S K J U, Ehsani R, Salyani M, Hebel M A, Bora G C. Study of force distribution in the citrus tree canopy during harvest using a continuous canopy shaker. Comput Electron Agr, 2011; 76(1): 51–58.
Willis J R, Milton G.W. On modifications of Newton’s second law and linear continuum elastodynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007; 463(2079): 855–880.
Copyright (c)