Review of theoretical methods and research aspects for detecting leaf water content using terahertz spectroscopy and imaging

Fangfang Qu, Pengcheng Nie, Lei Lin, Chengyong Cai, Yong He

Abstract


The water content in vegetative leaves is an important indicator to plant science. It reveals the physiological status of plants and provides valuable information in irrigation management. Terahertz (THz) as a state-of-the-art technology shows great potential in measuring and monitoring the water status in plant leaves. This paper reviewed the theoretical models for calculating water content in the plant leaves, the methods for eliminating the scattering loss caused by the surface roughness of leaf, the applications of THz spectroscopy and THz imaging for monitoring leaf water content and describing leaf water distribution. The survey of the researches presents the considerable advantages of this emerging and promising THz technology in agriculture.
Keywords: terahertz (THz) spectroscopy, terahertz imaging, leaf water content, leaf water distribution, theoretical models, eliminating scattering loss, agriculture
DOI: 10.25165/j.ijabe.20181105.3952

Citation: Qu F F, Nie P C, Lin L, Cai C Y, He Y. Review of theoretical methods and research aspects for detecting leaf water content using terahertz spectroscopy and imaging. Int J Agric & Biol Eng, 2018; 11(5): 27–34.

Keywords


terahertz (THz) spectroscopy, terahertz imaging, leaf water content, leaf water distribution, theoretical models, eliminating scattering loss, agriculture

Full Text:

PDF

References


Signorelli S, Corpas F J, Borsani O, Barroso J B, Monza J. Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Sci, 2013; 201-202(3): 137–146.

Gomez-Bellot M J, Nortes P A, Ortuno M F, Romero C, Fernandez-Garcia N, Sanchez-Blanco M J. Influence of arbuscular mycorrhizal fungi and treated wastewater on water relations and leaf structure alterations of Viburnum tinus L. plants during both saline and recovery periods. J. Plant Physiol, 2015; 188: 96–105.

Ullah S, Skidmore A K, Ramoelo A, Groen T A, Naeem M, Ali A. Retrieval of leaf water content spanning the visible to thermal infrared spectra. ISPRS Journal of Photogrammetry & Remote Sensing, 2014; 93(7): 56–64.

Cheng T, Rivard B, Sánchez-Azofeifa A G, Féret J B, Jacquemoud S, Ustin S L. Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis. J. Plant Physiol, 2012; 169(12): 1134–1142.

Püschel D, RydlováJ, Vosátka M. Can mycorrhizal inoculation stimulate the growth and flowering of peat-grown ornamental plants under standard or reduced watering? Applied Soil Ecology, 2014; 80: 93–99.

Girón I F, Corell M, Galindo A, Torrecillas E, Morales D, Dell’Amico J, et al. Changes in the physiological response between leaves and fruits during a moderate water stress in table olive trees. Agricultural Water Management, 2015; 148: 280–286.

ie P, Qu F, Lin L, Dong T, He Y, Shao Y. Detection of water content in rapeseed leaves using terahertz spectroscopy. Sensors, 2017; 17(12): 2830.

Rodríguez P, Mellisho C D, Conejero W, Cruz Z N, Ortuño M F, Galindo A, et al. Plant water relations of leaves of pomegranate trees under different irrigation conditions. Environ. Exp. Bot, 2012; 77: 19–24.

Muramatsu N, Hiraoka K. Estimation of water content in the leaves of fruit trees using infrared images. Horticultural Research, 2006; 5(5): 397–402.

Federici J F. Review of moisture and liquid detection and mapping using terahertz imaging. Journal of Infrared, Millimeter, and Terahertz Waves, 2012; 33(2): 97–126.

Ferrante D, Oliva G E, Fernández R J. Soil water dynamics, root systems, and plant responses in a semiarid grassland of Southern Patagonia. Journal of Arid Environments, 2014; 104: 52–58.

Gerhards M, Rock G, Schlerf M, Udelhoven T. Water stress detection in potato plants using leaf temperature, emissivity, and reflectance. International Journal of Applied Earth Observation & Geoinformation, 2016; 53: 27–39.

Ni Z, Liu Z, Huo H, Li Z L, Nerry F, Wang Q, et al. Early water stress detection using leaf-level measurements of Chlorophyll fluorescence and temperature data. Remote Sensing, 2015; 7(3): 3232–3249.

Cheng T, Riaño D, Koltunov A, Whiting M L, Ustin S L, Rodriguez J. Detection of diurnal variation in orchard canopy water content using MODIS/ASTER airborne simulator (MASTER) data. Remote Sens. Environ, 2013; 132(6): 1–12.

Knani S, Aouaini F, Bahloul N, Khalfaoui M, Hachicha M A, Ben Lamine A, et al. Modeling of adsorption isotherms of water vapor on Tunisian olive leaves using statistical mechanical formulation. Physica A, 2014; 400: 57–70.

Cao Z, Wang Q, Zheng C. Best hyperspectral indices for tracing leaf water status as determined from leaf dehydration experiments. Ecol. Indic, 2015; 54: 96–107.

Jia J, Ji H. Plant leaf water detection instrument based on near infrared spectroscopy. International Conference on Computer and Computing Technologies in Agriculture, 2011; pp.20–27.

Capitani D, Brilli F, Mannina L, Proietti N, Loreto F. In situ investigation of leaf water status by portable unilateral nuclear magnetic resonance. Plant physiology, 2009; 149(4): 1638.

Hosako I, Sekine N, Patrashin M, Saito S, Fukunaga K, Kasai Y, et al. At the dawn of a new era in terahertz technology. Proc. IEEE, 2007; 95(8): 1611–1623.

Siegel P H. Terahertz technology. IEEE Transactions on Microwave Theory & Techniques, 2002; 50(3): 910–928.

Qu F, Lin L, He Y, Nie P, Cai C, Dong T, et al. Terahertz multivariate spectral analysis and molecular dynamics simulations of three pyrethroid pesticides. Journal of Infrared Millimeter & Terahertz Waves, 2018; 3:1–14.

Karpowicz N, Zhong H, Xu J, Lin K, Hwang J S, Zhang X C. Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging. Semiconductor Science & Technology, 2005; 20(7): 293–299.

Rivas J G, Schotsch C, Bolivar P H, Kurz H. Enhanced transmission of THz radiation through subwavelength holes. Physical Review B Condensed Matter, 2003; 68(20): 201306.

Galvão R, Hadjiloucas S, Bowen J, Coelho C. Optimal discrimination and classification of THz spectra in the wavelet domain. Opt. Express, 2003; 11(12): 1462–1473.

Ferguson B, Zhang X C. Materials for terahertz science and technology. Physics, 2003; 1(1): 26–33.

Walther M, Plochocka P, Fischer B, Helm H, Uhd J P. Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy. Biopolymers, 2002; 67(4-5): 310–313.

Qu F, Pan Y, Lin L, Cai C, Dong T, He Y, et al. Experimental and theoretical study on terahertz absorption characteristics and spectral de-noising of three plant growth regulators. Journal of Infrared Millimeter & Terahertz Waves, 2018; 1–13.

Qu F, Lin L, Cai C, Dong T, He Y, Nie P. Molecular characterization and theoretical calculation of plant growth regulators based on terahertz time-domain spectroscopy. Applied Sciences, 2018; 8(3): 420.

Huang L, Shabaev A, Lambrakos S G, Bernstein N, Jacobs V, Finkenstadt D, et al. Dielectric response of high explosives at thz frequencies calculated using density functional theory. J. Mater. Eng. Perform, 2012; 21(7): 1120–1132.

Hehre W J. Ab initio molecular orbital theory. Wiley, 1986; p 399–406.

Zhang F, Wang H W, Tominaga K, Hayashi M. Characteristics of low-frequency molecular phonon modes studied by THz spectroscopy and solid-state Ab initio theory: Polymorphs I and III of diflunisal. J. Phys. Chem. B, 2016; 29(4): 41–62.

Paloscia S, Santi E. A semi-empirical algorithm for estimating soil moisture from dual-frequency microwave AMSR data. Geoscience and Remote Sensing Symposium (IGARSS 03), IEEE, 2003; pp.677–679.

Qu F, Lin L, He Y, Nie P, Cai C, Dong T, et al. Spectral characterization and molecular dynamics simulation of pesticides based on terahertz time-domain spectra analyses and density functional theory (DFT) calculations. Molecules, 2018; 23: 1607.

Breitenstein B, Scheller M, Shakfa M K, Kinder T, Müller-Wirts T, Koch M, et al. Introducing terahertz technology into plant biology: A novel method to monitor changes in leaf water status. Journal of Applied Botany and Food Quality, 2011; 84(2): 158–161.

Kuroda R, Sei N, Oka T, Yasumoto M, Toyokawa H, Ogawa H, et al. Development of high power THz-TDS system based on S-band compact electron linac. Radiation Physics & Chemistry, 2008; 77(10): 1131–1135.

Mendis R, Sydlo C, Sigmund J, Feiginov M, Meissner P, Hartnagel H L. Tunable CW-THz system with a log-periodic photoconductive emitter. Solid-State Electron, 2004; 48(10-11): 2041–2045.

Duvillaret L, Garet F, Coutaz J L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron, 1996; 2(3): 739–746.

Usami M, Iwamoto T, Fukasawa R, Tani M, Watanabe M, Sakai K. Development of a THz spectroscopic imaging system. Phys. Med. Biol, 2002; 47(21): 3749–53.

Chen H T, Kersting R, Cho G C. Terahertz imaging with nanometer resolution. Appl. Phys. Lett, 2003; 83(15): 3009–3011.

Hu B B, Nuss M C. Imaging with terahertz waves. Opt. Lett, 1995; 20(16): 1716.

Siebert K J, Quast H, Leonhardt R, Löffler T, Thomson M, Bauer T, et al. Continuous-wave all-optoelectronic terahertz imaging. Appl. Phys. Lett, 2002; 80(16): 3003–3005.

Dobroiu A, Yamashita M, Ohshima Y N, Morita Y, Otani C, Kawase K. Terahertz imaging system based on a backward-wave oscillator. Appl. Opt, 2004; 43(30): 5637–5646.

Jördens C, Scheller M, Breitenstein B, Selmar D. Evaluation of leaf water status by means of permittivity at terahertz frequencies. J. Biol. Phys, 2009; 35(3): 255–264.

Gente R, Born N, Voß N, Sannemann W, Léon J, Koch M, et al. Determination of leaf water content from terahertz time-domain spectroscopic data. Journal of infrared, Millimeter, and Terahertz Waves, 2013; 34(3): 316–323.

Erjr H, Rock B N, Nobel P S. Measurement of leaf relative water content by infrared reflectance. Remote Sens. Environ, 1987; 22(3): 429–435.

Hadjiloucas S, Walker G C, Bowen J W, Zafiropoulos A. Propagation of errors from a null balance terahertz reflectometer to a sample's relative water content. Journal of Physics Conference Series, 2009; p.12.

Stavn R H. Light attenuation in natural waters: Gershun's law, Lambert-Beer law, and the mean light path. Appl. Opt, 1981; 20(14): 2326–2327.

Zhang H B, Mitobe K, Yoshimura N. Application of Terahertz imaging to water content measurement. Japanese Journal of Applied Physics, 2008; 47(10): 8065–8070.

Scheller M, Jordens C, Breitenstein B, Selmar D, Koch M. Effective permittivity and scattering model for the evaluation of the leaf water status, 33rd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2008), 2008; pp.1–2.

And D T, Söderman O. Diffusion of water absorbed in cellulose fibers studied with 1H-NMR. Langmuir, 2001; 17(9): 2694–2702.

Jördens C, Wietzke S, Scheller M, Koch M. Investigation of the water absorption in polyamide and wood plastic composite by terahertz time-domain spectroscopy. Polym. Test, 2010; 29(2): 209–215.

Gente R, Rehn A, Koch M. Contactless water status measurements on plants at 35 GHz. Journal of Infrared, Millimeter, and Terahertz Waves, 2015; 36(3): 1–6.

Ralf G, Martin K. Monitoring leaf water content with THz and sub-THz waves. Plant Methods, 2015; 11:15.

Born N, Behringer D, Liepelt S, Beyer S. Schwerdtfeger M, Ziegenhagen B, et al. Monitoring plant drought stress response using terahertz time-domain spectroscopy. Plant Physiology, 2014; 164(4): 1571–1577.

Hadjiloucas S, Galvão R K, Bowen J W. Analysis of spectroscopic measurements of leaf water content at terahertz frequencies using linear transforms. Journal of the Optical Society of America A Optics Image Science & Vision, 2002; 19(12): 2495–2509.

Hadjiloucas S, Karatzas L S, Bowen J W. Measurements of leaf water content using terahertz radiation. IEEE Transactions on Microwave Theory & Techniques, 1999; 47(2): 142–149.

Gente R, Born N, Velauthapillai A, Balzer J C. Monitoring the water content of plant leaves with THz time domain spectroscopy. International Conference on Infrared, Millimeter, and Terahertz Waves, 2015; pp 1–2.

Rehn A, Gente R, Probst T, Balzer J C. Plant water status monitoring with THz QTDS. German Microwave Conference, 2016; pp.4–6.

Castrocamus E, Palomar M, Covarrubias A A. Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy. Scientific reports, 2013; 3(10): 2910–2910.

Born N, Gente R, Behringer D, Schwerdtfeger M. Monitoring the water status of plants using THz radiation. International Conference on Infrared, Millimeter, and Terahertz Waves, 2014; 1–2.

Thamboon P, Buaphad P, Thongbai C, Saisud J, Kusoljariyakul K, Rhodes M W, et al. Investigation of water distribution in proton exchange membrane fuel cells via Terahertz imaging. Nucl. Instrum. Methods Phys. Res., Sect. A, 2011; 637(1): S161–S164.

Ogawa Y, Kawase K, Mizuno M, Yamashita M, Otani C. Nondestructive and real-time measurement of moisture in plant. IEEJ Transactions on Electronics Information & Systems, 2004; 124(9): 1672–1677.

de Cumis U S, Xu J H, Masini L, Degl’Innocenti R, Pingue P, Beltram F, et al. Terahertz confocal microscopy with a quantum cascade laser source. Opt. Express, 2012; 20(20): 21924–21931.

Zhang H, Mitobe K, Yoshimura N. Terahertz imaging for water content measurement. International Symposium on Electrical Insulating Materials, 2008; pp.87–90.




Copyright (c) 2018



2023-2026 Copyright IJABE Editing and Publishing Office