Radon transform-based motion blurred silkworm pupa image restoration
Abstract
Keywords: silkworm pupa, image restoration, radon transform, machine vision, motion blur, deblurring
DOI: 10.25165/j.ijabe.20191202.3681
Citation: Tao D, Wang Z R, Li G L, Qiu G Y. Radon transform-based motion blurred silkworm pupa image restoration. Int J Agric & Biol Eng, 2019; 12(2): 152–159.
Keywords
Full Text:
PDFReferences
Jordan J, Ellington J, McCoy J. An electronic version system for sorting cotten boll worm pupae by sex. IEEE Conf. Signals, Syst. Comput, 1899; 2: 538–542.
Seo Y, Morishima H, Hosokawa A. Separation of male and female silkworm pupae by weight: prediction of separability. The Japanese Society of Agricultural Machinery, 1985; 47: 191–195.
Liu C, Ren Z H, Wang H Z, Yang P Q, Zhang X L. Analysis on Sex of Silkworms by MRI Technology. International Conference on Biomedical Engineering and Informatics, 2008; 2: 8–12.
Jin T, Liu L, Tang X, Chen H. Differentiation of male, female and dead silkworms while in the cocoon by near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 1995; 3: 89–95.
Kamtongdee C, Sumriddetchkajorn S, Sa-Ngiamsak C. Feasibility study of silkworm pupa sex identification with pattern matching. Computers & Electronics in Agriculture, 2013; 95(1): 31–37.
Sumriddetchkajorn S, Kamtongdee C. Optical penetration-based silkworm pupa sex sensor structure. Applied optics, 2012; 51(4): 408–412.
Tao D, Li G L, Wang Z R, Qiu G Y. Algorithm and experiments of noisy low-illumination silkworm pupa images restoration. Transactions of the CASE, 2015; 31(15): 147–152. (in Chinese)
Tao D, Li G L, Wang Z R, Qiu G Y. Silkworm pupa image restoration based on aliasing resolving algorithm and identifying male and female. Transactions of the CASE, 2016; 32(16): 168–174. (in Chinese)
Rav-Acha A, Peleg S. Two motion-blurred images are better than one. Pattern Recognition Letters, 2005; 26(3): 311–317.
Cho S, Matsushita Y, Lee S. Removing Non-Uniform Motion Blur from Images. IEEE International Conference on Computer Vision, 2007; 1–8.
Dai S, Wu Y. Motion from blur. In Proc. CVPR, 2008; 1–8.
Ji H, Liu C. Motion blur identification from image gradients. IEEE Conference on Computer Vision and Pattern Recognition, 2008; 1–8.
Fergus R, Singh B, Hertzmann A, Roweis S T, Freeman W T. Removing camera shake from a single photograph. in Proc. SIGGRAPH, 2006; 25(3): 787–794.
Shan Q, Jia J Y, Agarwala A. High-quality motion deblurring from a single image. ACM Transactions on Graphics, 2008; 27(3): 1–10.
Xu L, Jia J Y. Two-phase kernel estimation for robust motion deblurring. ECCV, 2010; 4: 157–170.
Cho T S, Paris S, Horn B K P, Freeman W T. Blur kernel estimation using the radon transform. CVPR, 2011; 42: 241–248.
Pan J S, Hu Z, Su Z X, Yang M-H. Deblurring text images via L0-regularized intensity and gradient prior. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014), 2014; 2901–2908.
Levin A, Weiss Y, Durand F, Freeman W T. Understanding and evaluating blind deconvolution algorithms. CVPR, 2009; 8: 1964–1971.
Joshi N, Szeliski R, Kriegman D. PSF estimation using sharp edge prediction. CVPR, 2008; 1–8.
Cho S, Lee S. Fast motion deblurring. ACM Transactions on Graphics, 2009; 28(5): 1–8.
Tai Y W, Lin S. Motion-aware noise filtering for deblurring of noisy and blurry images. CVPR, 2012; 157: 17–24.
Zhong L, Cho S, Metaxas D, Paris S, Wang J. Handling noise in single image deblurring using directional filters. CVPR, 2013; 9: 612–619.
Bar L, Sochen N, Kiryati N. Image deblurring in the presence of salt-and-pepper noise. Scale Space and PDE Methods in Computer Vision. Springer Berlin Heidelberg, 2005; 3459: 107–118.
Joshi N, Zitnick C L, Szeliski R, Kriegman D J. Image deblurring and denoising using color priors. CVPR, 2009; 1550–1557.
Yuan L, Sun J, Quan L, Shum H Y. Progressive inter-scale and intra-scale non-blind image deconvolution. ACM SIGGRAPH, 2008;
(3): 1–10.
Levin A, Fergus R, Durand F, Freeman W T. Image and depth from a conventional camera with a coded aperture. ACM Transactions on Graphics, 2007; 26(3): 1–9.
Wang Y, Yang J, Yin W, Zhang Y. A new alternating minimization algorithm for total variation image reconstruction. Siam Journal on Imaging Sciences, 2008; 1(3): 248–272.
Krishnan D, Fergus R. Fast image deconvolution using hyper-Laplacian priors. International Conference on Neural Information Processing Systems. Curran Associates Inc, 2009; 1033–1041.
Yang J, Zhang Y, Yin W. An efficient TV-L1 algorithm for deblurring multichannel images corrupted by impulsive noise. Siam Journal on Scientific Computing, 2009; 31(4): 2842–2865.
Wang C, Yue Y, Dong F, Tao Y, Ma X, Clapworthy G, et al. Nonedge-specific adaptive scheme for highly robust blind motion deblurring of natural imagess. IEEE Trans Image Process, 2013; 22, 884–897.
Osher S, Rudin L I. Feature-oriented image enhancement using shock filters. Siam Journal on Numerical Analysis 1990; 27(4): 919–940.
Bertsekas D P, Nedic A, Ozdaglar A E. Convex analysis and optimization athena scientific. Journal of Mathematical Analysis & Applications, 2003; 129(2): 420–432.
Levin A, Weiss Y. User assisted separation of reflections from a single image using a sparsity prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004; 29(9): 1647–1654.
Yang J, Yin W, Zhang Y, Wang Y. A fast algorithm for edge-preserving variational multichannel image restoration. Siam Journal on Imaging Sciences, 2009; 2(1): 569–592.
Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 2004; 13: 600–612.
Hu Z, Yang M H. Learning good regions to Deblur. International Journal of Computer Vision, 2015; 115(3): 345–362.
Copyright (c) 2019