Py-GC/MS study of lignin pyrolysis and effect of catalysts on product distribution
Abstract
Keywords: lignin, Py-GC/MS, fast pyrolysis, catalytic upgrading, pore structure, acid-base property
DOI: 10.25165/j.ijabe.20171005.2852
Citation: Si Z, Wang C G, Bi K, Zhang X H, Yu C L, Dong R J, et al. Py-GC/MS study of lignin pyrolysis and effect of catalysts on product distribution. Int J Agric & Biol Eng, 2017; 10(5): 214–225.
Keywords
Full Text:
PDFReferences
Liaw S S, Perez V H, Zhou S, Rodriguez-Justo O, Garcia-Perez M. Py-GC/MS studies and principal component analysis to evaluate the impact of feedstock and temperature on the distribution of products during fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 2014; 109: 140–151.
Anex R P, Aden A, Kazi F K, Fortman J, Swanson R M, Wright M M, et al. Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel, 2010; 89: S29–S35.
Aho A, Kumar N, Eränen K, Salmi T, Hupa M, Murzin D Y. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel, 2008; 87(12): 2493–2501.
Zhang H, Xiao R, Huang H, Xiao G. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresource Technology, 2009; 100(3): 1428–1434.
Carlson T R, Tompsett G A, Conner W C, Huber G W. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Topics in Catalysis, 2009; 52(3): 241–252.
Karanjkar P U, Coolman R J, Huber G W, Blatnik M T, Almalkie S, Bruyn Kops S M, et al. Production of aromatics by catalytic fast pyrolysis of cellulose in a bubbling fluidized bed reactor. AIChE Journal, 2014; 60(4): 1320–1335.
Zhu X, Lu Q, Li W, Zhang D. Fast and catalytic pyrolysis of xylan: Effects of temperature and M/HZSM-5 (M=Fe, Zn) catalysts on pyrolytic products. Frontiers of Energy and Power Engineering in China, 2010; 4(3): 424–429.
Kim S S, Jun B R, Park S H, Jeon J K, Suh D J, Kim T W, et al. Catalytic upgrading of xylan over mesoporous y catalyst. Journal of Nanoscience and Nanotechnology, 2014; 14(4): 2925–2930.
Guo X, Wang S, Zhou Y, Luo Z. Catalytic pyrolysis of xylan-based hemicellulose over zeolites. Int J Energy Environ, 2011; 5(4): 137–142.
Kloekhorst A, Wildschut J, Heeres H J. Catalytic hydrotreatment of pyrolytic lignins to give alkylphenolics and aromatics using a supported Ru catalyst. Catalysis Science & Technology, 2014; 4(8): 2367–2677.
Okuda K, Umetsu M, Takami S, Adschiri T. Disassembly of lignin and chemical recovery-rapid depolymerization of lignin without char formation in water-phenol mixtures. Fuel Processing Technology, 2004; 85(8): 803–813.
Li C Z, Zhao X C, Wang A Q, Huber G W, Zhang T. Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Reviews, 2015; 115(21): 11559–11624.
Neumann G T, Pimentel B R, Rensel D J, Hicks J C. Correlating lignin structure to aromatic products in the catalytic fast pyrolysis of lignin model compounds containing β–O–4 linkages. Catalysis Science & Technology, 2014; 4(11): 3953–3963.
Shen D, Zhao J, Xiao R, Gu S. Production of aromatic monomers from catalytic pyrolysis of black-liquor lignin. Journal of Analytical and Applied Pyrolysis, 2015; 111: 47–54.
Azadi P, Inderwildi O R, Farnood R, King D A. Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renewable and Sustainable Energy Reviews, 2013; 21: 506–523.
Thring R W, Katikaneni S P, Bakhshi N N. The production of gasoline range hydrocarbons from Alcell® lignin using HZSM-5 catalyst. Fuel Processing Technology, 2000; 62(1): 17–30.
Mullen C A, Boateng A A. Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Processing Technology, 2010; 91(11): 1446–1458.
Yu Y, Li X, Su L, Zhang Y, Wang Y, Zhang H. The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts. Applied Catalysis A: General, 2012; 447: 115–123.
Adhikari S, Srinivasan V, Fasina O. Catalytic pyrolysis of raw and thermally treated lignin using different acidic zeolites. Energy & Fuels, 2014; 28(7): 4532–4538.
El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A. Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polymer Degradation and Stability, 2009; 94(10): 1632–1638.
Monteil-Rivera F, Phuong M, Ye M, Halasz A, Hawari J. Isolation and characterization of herbaceous lignins for applications in biomaterials. Industrial Crops and Products, 2013; 41: 356–364.
Kong X, Li X, Wu S, Zhang X, Liu J. Efficient conversion of cotton stalks over a Fe modified HZSM-5 catalyst under microwave irradiation. RSC Advances, 2016; 6(34): 28532–28537.
Liu S, Han L, Duan Y, Asahina S, Terasaki O, Cao Y, et al. Synthesis of chiral TiO2 nanofibre with electron transition-based optical activity. Nature communications, 2012; 3: 1215.
Wang X X, Zhao J L, Hou X R, He Q, Tang C C. Catalytic activity of ZrO2 nanotube arrays prepared by anodization method. Journal of Nanomaterials, 2012; 2012:1.
Xie W, Peng H, Chen L. Calcined Mg–Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. Journal of Molecular Catalysis A: Chemical, 2006; 246(1): 24–32.
Bruzzoniti M C, Sarzanini C, Torchia A M, Teodoro M, Testa F, Virga A, et al. MCM-41 functionalized with ethylenediaminetriacetic acid for ion-exchange chromatography. Journal of Materials Chemistry, 2011; 21(2): 369–376.
Chandrasekar G, You K S, Ahn J W, Ahn W S. Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash. Microporous and Mesoporous Materials. 2008; 111(1): 455–462.
Carvalho D L, de Avillez R R, Rodrigues M T, Borges L E, Appel L G. Mg and Al mixed oxides and the synthesis of n-butanol from ethanol. Applied Catalysis A: General, 2012; 415: 96–100.
Iatridis B, Gavalas G R. Pyrolysis of a precipitated kraft lignin. Industrial & Engineering Chemistry Product Research and Development, 1979; 18(2): 127–130.
Dorrestijn E, Laarhoven L J, Arends I W, Mulder P. The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. Journal of Analytical and Applied Pyrolysis, 2000; 54(1): 153–192.
Foster A J, Jae J, Cheng Y T, Huber G W, Lobo R F. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Applied Catalysis A: General, 2012; 423: 154–161.
Idem R O, Katikaneni S P, Bakhshi N N. Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape selectivity on product distribution. Fuel Processing Technology, 1997; 51(1): 101–125.
Carlson T R, Jae J, Lin Y C, Tompsett G A, Huber G W. Catalytic fast pyrolysis of glucose with HZSM-5: the combined homogeneous and heterogeneous reactions. Journal of Catalysis, 2010; 270(1): 110–124.
Li X, Su L, Wang Y, Yu Y, Wang C, Li X, et al. Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons. Frontiers of Environmental Science & Engineering, 2012; 6(3): 295–303.
Cheng Y T, Wang Z, Gilbert C J, Fan W, Huber G W. Production of p-Xylene from Biomass by Catalytic Fast Pyrolysis Using ZSM-5 Catalysts with Reduced Pore Openings. Angewandte Chemie International Edition, 2012; 51(44): 11097–110100.
Iliopoulou E, Antonakou E, Karakoulia S, Vasalos I, Lappas A, Triantafyllidis K. Catalytic conversion of biomass pyrolysis products by mesoporous materials: effect of steam stability and acidity of Al-MCM-41 catalysts. Chemical Engineering Journal, 2007; 134(1): 51–7.
Kaewpengkrow P, Atong D, Sricharoenchaikul V. Effect of Pd, Ru, Ni and ceramic supports on selective deoxygenation and hydrogenation of fast pyrolysis Jatropha residue vapors. Renewable Energy, 2014; 65: 92–101.
Kaewpengkrow P, Atong D, Sricharoenchaikul V. Catalytic upgrading of pyrolysis vapors from Jatropha wastes using alumina, zirconia and titania based catalysts. Bioresource Technology, 2014; 163: 262–269.
Auta M, Ern L, Hameed B. Fixed-bed catalytic and non-catalytic empty fruit bunch biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 2014; 107: 67–72.
Wang D, Xiao R, Zhang H, He G. Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA–FTIR analysis. Journal of Analytical and Applied Pyrolysis, 2010; 89(2): 171–177.
Copyright (c)