Classified denoising method for laser point cloud data of stored grain bulk surface based on discrete wavelet threshold
Abstract
Keywords: point cloud data, denoising, grid method, discrete wavelet threshold (DWT) method, 3-D laser scanning, stored grain
DOI: 10.3965/j.ijabe.20160904.2333
Citation: Shao Q, Xu T, Yoshino T, Song N, Zhu H. Classified denoising method for laser point cloud data of stored grain bulk surface based on discrete wavelet threshold. Int J Agric & Biol Eng, 2016; 9(4): 123-131.
Keywords
Full Text:
PDFReferences
Shewry P R, Halford N G. Cereal seed storage proteins: structures, properties and role in grain utilization. Journal of experimental botany, 2002; 53(370): 947–958. DOI: 10.1093/jexbot/53.370.947
Ward J K, Davis J D. A system to assess grain bag storage internal environment. Transactions of the ASABE, 2013; 56(4): 1503–1509.
Zheng D K, Fielke J. Some physical properties of Australian Nonpareil almonds related to bulk storage. International Journal of Agricultural and Biological Engineering, 2014; 7(5): 116–122. DOI: 10.3965/j.ijabe. 20140705.013
Walker C K, Panozzo J F. Measuring volume and density of a barley grain using ellipsoid approximation from a 2-D digital image. Journal of Cereal Science, 2012; 55(1): 61–68. DOI: 10.1016/j.jcs.2011.10.004
Shao Q, Xu T, Yoshino T, Song N, Zhu H. Design and experiment for grain storage monitoring system based on 3-D laser scanning technology. Transactions of the CSAE, 2015; 31(20): 262–267. DOI: 10.11975/j.issn.1002-6819.2015.20. 036 (in Chinese with English abstract).
Li J Y, Zhou F Q. Research on key technology of three-dimensional laser scanning data processing. In: 2013 International Conference on Computer Sciences and Applications, 2013; 784–787. DOI: 10.1109/CSA.2013.187
Georgescu B, Shimshoni I, Meer P. Mean shift based clustering in high dimensions: A texture classification example. In: 9th IEEE International Conference on Computer Vision, 2003; (1): 456–463. DOI: 10.1109/ICCV. 2003.1238382
Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising. ACM Transactions on Graphics, 2003; 22(3): 950–953. DOI: 10.1145/882262.882368.
Sun X F, Rosin P L, Martin R R, Langbein F C. Fast and effective feature-preserving mesh denoising. IEEE Transactions on Visualization and Computer Graphics, 2007; 13 (5): 925–938. DOI: 10.1109/TVCG.2007.1065
Huang W M, Li Y W, Wen P Z. Algorithm for 3D point cloud denoising. In: 2009 Third International Conference on Genetic and Evolutionary Computing, 2009; 574–577. DOI: 10.1109/WGEC.2009.139
Zhang L, Liu L G, Gotsman C, Huang H. Mesh reconstruction by meshless denoising and parameterization. Computers & Graphics, 2010; 34(3): 198–208. DOI: 10.1016/j.cag.2010.03.006
Rosman G, Dubrovina A, Kimmel R. Patch-collaborative spectral point-cloud denoising. Computer Graphics Forum, 2013; 32(8): 1–12. DOI: 10.1111/cgf.12139
Song J. Two-stage point-sampled model denoising by robust ellipsoid criterion and mean shift. In: 2013 Third International Conference on Intelligent System Design and Engineering Applications, 2013; 1581–1584. DOI 10.1109/
ISDEA.2012.380
Lai X D, Zheng M. A denoising method for LiDAR full-waveform data. Mathematical Problems in Engineering, 2015; 1–8. DOI: 10.1155/2015/164318
Sun Y J, Schaefer S, Wang W P. Denoising point sets via L0 minimization. Computer Aided Geometric Design, 2015; 2015: 35–36(SI): 2–15. DOI: 10.1016/j.cagd.2015.03.011
Li X Z, Li X J. 3D body point cloud data denoising and registration. In: 2009 Second international conference on intelligent computation technology and automation, 2009; II: 587–590. DOI: 10.1109/ICICTA.2009.376
Lv Y, Wan C H. A denoising method by layering for terrain point cloud from 3D laser scanner. Journal of Geomatics Science and Technology, 2014; 31(5): 501–504. DOI: 10.3969/j.issn.1673-6338.2014.05.013 (in Chinese with English abstract).
Cheng X J, Jia D F, Liu YP, Cheng X L. Tunnel point cloud denoising algorithm based on centerline. Journal of Tongji University (Natural Science), 2015; 43(8): 1239–1245. DOI: 10.11908/j.issn.0253-374x.2015.08.018. (in Chinese with English abstract).
Ram I, Cohen I, Elad M. Facial image compression using patch-ordering-based adaptive wavelet transform. IEEE Signal Processing Letters, 2014; 21(10): 1270–1274. DOI: 10.1109/LSP.2014.2332276
Simgiel E, Alby E, Grussenmeyer P. TLS data denoising by range image processing. The Photogrammetric Record, 2011; 26(134): 171–189. DOI: 10.1111/j.1477-9730.2011. 00631.x
Guo Y Q, Cao X G, Bi F C, Meng X L, Gao Y P. A new method of high-precision coordinate transformation research based on bursa model. Advanced Materials Research, 2014; 846–847: 1312–1315. DOI: 10.4028 / www.scientific.net / AMR. 846–847. 1312
Shao Q, Xu T, Yoshino T, Zhao Y J, Yang W T, Zhu H. Point cloud simplification algorithm based on particle swarm optimization for online measurement of stored bulk grain. International Journal of Agricultural and Biological Engineering, 2016; 9(1): 71–78. DOI: 10.3965/j.ijabe. 20160901.1805
Cao S, Yue J P, Ma W. Bilateral filtering denoise algorithm for point cloud based on feature selection. Journal of Southeast University (Natural Science Edition), 2013; 43(II): 351–354. DOI: 10.3969/j.issn.1001-0505.2013.S2.029 (in Chinese with English abstract).
Achim A, Tsakalides P, Bezerianos A. SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Transaction on Geoscience and Remote Sensing, 2003; 41(8): 1773–1784. DOI: 10.1109/ TGRS.2003.813488
Donoho D L, Johnstone I M. Threshold selection for wavelet shrinkage of noisy data. In: Proceedings of the 16th Annual International Conference of the IEEE, 1994; 1: A24–A25. DOI: 10.1109/IEMBS.1994.412133
Copyright (c)