Bioreactor performance and microbial community dynamics in a production-scale biogas plant in northeastern China
Abstract
Keywords: biogas production, production-scale plant, dairy manure, microbial community, northeast of China
DOI: 10.3965/j.ijabe.20171001.2025
Citation: Gao Y M, Yang A Y, Bao J, Ma R X, Yan L, Wang Y J, et al. Bioreactor performance and microbial community dynamics in a production-scale biogas plant in northeastern China. Int J Agric & Biol Eng, 2017; 10(1): 191-201.
Keywords
Full Text:
PDFReferences
Lin D. The development and prospective of bioenergy technology in China. Biomass and Bioenergy, 1998; 15(2): 181–186.
Naegele H J, Lindner J, Merkle W, Lemmer A, Jungbluth T, Bogenrieder C. Effects of temperature, pH and O2 on the removal of hydrogen sulfide from biogas by external biological desulfurization in a full scale fixed-bed trickling bioreactor (FBTB). Int J Agric & Biol Eng, 2013; 6(1): 69–81.
Zhang T, Mao C, Zhai N, Wang X, Yang G. Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk. Waste Manag., 2015; 35: 119–126.
Chang J, Leung D Y C, Wu C Z, Yuan Z H. A review on the energy production, consumption, and prospect of renewable energy in China. Renewable and Sustainable Energy Reviews, 2003; 7(5): 367–468.
Nansubuga I, Banadda N, Babu M, Vrieze J D, Verstraete W, Rabaey K. Enhancement of biogas potential of primary sludge by co-digestion with cow manure and brewery sludge. Int J Agric & Biol Eng, 2015; 8 (4):86–94.
Jiang X, Sommer S G, Christensen K V. A review of the biogas industry in China. Energy Policy, 2011; 39(10): 6073–6081.
Briones A, Raskin L. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr. Opin. Biotechnol., 2003;14(3): 270–276.
Goberna M, Insam H, Klammer S, Pascual J A, Sánchez J. Microbial community structure at different depths in disturbed and undisturbed semiarid Mediterranean forest soils. Microb. Ecol., 2005; 50(3): 315–326.
Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek, 1998; 73(1): 127–141.
Wang W D, Yan L, Cui Z J, Gao Y M, Wang Y J, Jing R Y. Characterization of a microbial consortium capable of degrading lignocellulose. Bioresour. Technol., 2011; 102: 9321–9324.
Ventorino V, Aliberti A, Faraco V, Robertiello A, Giacobbe S, Ercolini D, et al. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application. Sci. Rep., 2015; 5: 8161.
Sekiguchi Y, Kamagata Y, Syutsubo K, Ohashi A, Harada H, Nakamura K. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology, 1998; 144: 2655–2665.
Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y. Direct comparison of single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) to characterize a microbial community on the basis of 16S rRNA gene fragments. J. Microbiol. Methods, 2006; 66(1): 165–169.
Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, et al. Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass. Syst. Appl. Microbiol., 2008; 31(3): 190–205.
Goberna M, Gadermaier M, García C, Wett B, Insam H. Adaptation of methanogenic communities to the cofermentation of cattle excreta and olive mill wastes at 37°C and 55°C. Appl. Environ. Microbiol., 2010; 76(19): 6564–6571.
Ziganshin A M, Ziganshina E E, Kleinsteuber S, Pröter J, Ilinskaya O N. Methanogenic community dynamics during anaerobic utilization of agricultural Wastes. Acta Nature, 2012; 4(4): 91–97.
Karakashev D, Batstone D J, Angelidaki I. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl. Environ. Microbiol., 2005; 71(1): 331–338.
Schlüter A, Bekel T, Diaz N N, Dondrup M, Eichenlaub R, Gartemann K H, et al. The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J. Biotechnol., 2008; 136(1-2): 77–90.
Kröber M, Bekel T, Diaz N N, Goesmann A, Jaenicke S, Krause L, et al. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J. Biotechnol., 2009; 142(1): 38–49.
Nettmann E, Bergmann I, Pramschüfer S, Mundt K, Plogsties V, Herrmann C, et al. Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants. Appl. Environ. Microbiol., 2010; 76(8): 2540–2548.
Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, et al. Comparative metagenomics of biogas-producing microbial communities from production- scale biogas plants operating under wet or dry fermentation conditions. Biotechnol. Biofuels., 2015; 8: 14.
Zhou J Y, Li P F, Li G, Zhang Q G, Ding P, Wang S P, et al. Design and preliminary experimental research on a new biogas fermentation system by solar heat pipe heating. Int. J Agric. & Biol. Eng., 2016; 9(2):153–162.
APHA. Standard methods for the examination of water and wastewater. American Public Health Association, Washington. DC, USA, 2005; pp.150–187.
Zhu H, Qu F, Zhu L. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res., 1993; 21: 5279–5280.
Wang Y X, Liu Q, Yan L, Gao Y M, Wang Y J, Wang W D. A novel lignin degradation bacterial consortium for efficient pulping. Bioresour. Technol., 2013; 139: 113–119.
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol., 2007; 24(8): 1596–1599.
Lee D H, Lau A K, and Pinder K L. Development and performance of an alternative Biofilter System. J. Air Waste Manage. Assoc., 2001; 51: 78–85.
Hanreich A, Schimpf U, Zakrzewski M, Schlüter A, Benndorf D, Heyer R, et al. Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation. Syst. Appl. Microbiol., 2013; 36(5): 330–338.
Harwood C S, Canale-Parola E. Ecology of spirochetes. Annu. Rev. Microbiol., 1984; 38: 161–192.
Klocke M, Mähnert P, Mundt K, Souidi K, Linke B. Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Syst. Appl. Microbiol., 2007; 30(2): 139–151.
Koeck D E, Wibberg D, Maus I, Winkler A, Albersmeier A, Zverlov V V, et al. Complete genome sequence of the cellulolytic thermophile Ruminoclostridium cellulosi wild-type strain DG5 isolated from a thermophilic biogas plant. J. Biotechnol., 2014; 188: 136–137.
Yan L, Gao Y M, Wang Y J, Liu Q, Sun Z Y, Fu B R, et al. Diversity of a mesophilic lignocellulolytic microbial consortium which is useful for enhancement of biogas production. Bioresour. Technol., 2012; 11: 49–54.
Copyright (c)