Feature extraction method of hyperspectral scattering images for prediction of total viable count in pork meat
Abstract
Keywords: hyperspectral scattering imaging, pork meat, total viable count, Lorentzian function, Gaussian function, Exponential function
DOI: 10.3965/j.ijabe.20150804.1559
Citation: Tao F F, Peng Y K, Li Y Y. Feature extraction method of hyperspectral scattering images for prediction of total viable count in pork meat. Int J Agric & Biol Eng, 2015; 8(4): 95-105.
Keywords
Full Text:
PDFReferences
Sofos J N. Challenges to meat safety in the 21st century. Meat Science, 2008; 78(1-2): 3−13.
Nychas G-J E, Skandamis P N, Tassou C C, Koutsoumanis K P. Meat spoilage during distribution. Meat Science, 2008; 78(1-2): 77−89.
China National Standard. GB2707-2005 Hygienic standard for fresh (frozen) meat of livestock. Standards Press of China, 2005.
Commission E. Commission regulation (EC) no 2073/2005 of November 2005 on microbiological criteria for foodstuffs (text with EEA relevance). Official Journal of the European Union, 2005; L338/1 − L338/26.
Borch E, Kant-Muermans M L, Blixt Y. Bacterial spoilage of meat and cured meat products. International Journal of Food Microbiology, 1996; 33(1): 103−120.
Dainty R H. Chemical/biochemical detection of spoilage. International Journal of Food Microbiology, 1996; 33(1): 19−33.
Ellis D I, Goodacre R. Rapid and quantitative detection of the microbial spoilage of muscle foods: Current status and future trends. Trends in Food Science and Technology, 2001; 12(11): 414−424.
Ellis D I, Broadhurst D, Kell D B, Rowland J J, Goodacre R. Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning. Applied and Environmental Microbiology, 2002; 68(6): 2822−2828.
Barbri N E, Llobet E, Bari N E, Correig X, Bouchikhi B. Electronic nose based on metal oxide semiconductor sensors as an alternative technique for the spoilage classification of red meat. Sensors, 2008; 8: 142−156.
Shackelford S D, Wheeler T L, Koohmaraie M. Tenderness classification of beef: II, design and analysis of a system to measure beef longissimus shear force under commercial processing conditions. Journal of Animal Science, 1999; 77(6): 1474−1481.
Vote D J, Belk K E, Tatum J D, Scanga J A, Smith G C. Online prediction of beef tenderness using a computer vision system equipped with a BeefCam module. Journal of Animal Science, 2003; 81(2): 457−465.
Barbin D F, ElMasry G, Sun D-W, Allen P, Morsy N. Non-destructive assessment of microbial contamination in porcine meat using NIR hyperspectral imaging. Innovative Food Science and Emerging Technologies, 2013; 17: 180−191.
ElMasry G, Iqbal A, Sun D-W, Allen P, Ward P. Quality classification of cooked, sliced turkey hams using NIR hyperspectral imaging system. Journal of Food Engineering, 2011; 103(3): 333−344.
Feng Y Z, Sun D-W. Determination of total viable count (TVC) in chicken breast fillets by near-infrared hyperspectral imaging and spectroscopic transforms. Talanta, 2013; 105: 244−249.
Park B, Lawrence K C, Windham W R, Buhr R J. Hyperspectral imaging for detecting fecal and ingesta contaminants on poultry carcasses. Transactions of the ASABE, 2002; 45(6): 2017−2026.
Park B, Lawrence K C, Windham W R, Smith D. Performance of hyperspectral imaging system for poultry surface fecal contaminant detection. Journal of Food Engineering, 2006; 75: 340−348.
Peng Y K, Lu R. Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 2008; 48(1): 52−62.
Peng Y K, Zhang J, Wang W, Li Y Y, Wu J H, Huang H, et al. Potential prediction of the microbial spoilage of beef using spatially resolved hyperspectral scattering profiles. Journal of Food Engineering, 2011; 102(2): 163−169.
Qiao J, Ngadi M O, Wang N, Gariepy C, Prasher S O. Pork quality and marbling level assessment using a hyperspectral imaging system. Journal of Food Engineering, 2007; 83(1): 10−16.
Talens P, Mora L, Morsy N, Barbin D F, ElMasry G, Sun D W. Prediction of water and protein contents and quality classification of Spanish cooked ham using NIR hyperspectral imaging. Journal of Food Engineering, 2013; 11(3)7: 272−280.
Tao F F, Wang W, Li Y Y, Peng Y K, Wu J H, Shan J J, et al. A rapid nondestructive measurement method for assessing the total plate count on chilled pork surface. Spectroscopy and Spectral Analysis, 2010; 30(12): 3405−3409.
Tao F F, Peng Y K, Li Y Y, Chao K, Dhakal S. Simultaneous determination of tenderness and Escherichia coli contamination of pork using hyperspectral scattering technique. Meat Science, 2012; 90(3): 851−857.
Tao F F, Tang X, Peng Y K, Dhakal S. Classification of pork quality characteristics by hyperspectral scattering technique. In: Symposium Conducted at ASABE Annual International Meeting, Dallas, Texas, USA, 2012.
Tao F F, Peng Y K. A method for nondestructive prediction of pork meat quality and safety attributes by hyperspectral imaging technique. Journal of Food Engineering, 2014; 126: 98−106.
Tao F F, Peng Y K. A nondestructive method for prediction of total viable count in pork meat by hyperspectral scattering imaging. Food and Bioprocess Technology, 2015; 8(1): 17−30.
Wu J H, Peng Y K, Li Y Y, Wang W, Chen J, Dhakal S. Prediction of beef quality attributes using VIS/NIR hyperspectral scattering imaging technique. Journal of Food Engineering, 2012; 109(2): 267−273.
Zhang L L, Peng Y K, Tao F F, Zhao S W, Song Y L. Rapid non-destructive detection of total volatile basic nitrogen in pork using hyperspectral technique. Journal of Food Safety and Quality, 2012; 3(6): 575−579.
Guo Z, Huang W, Chen L, Peng Y K, Wang X. Shortwave infrared hyperspectral imaging for detection of pH value in Fuji apple. Int J Agric & Biol Eng, 2014; 7(2): 130−137.
Peng Y, Lu R. Modeling multispectral scattering profiles for prediction of apple fruit firmness. Transactions of the ASAE, 2005; 48(1): 235−242.
Peng Y K, Lu R. Prediction of apple fruit firmness and soluble solids content using characteristics of multispectral scattering images. Journal of Food Engineering, 2007; 82(2): 142−152.
Zhu Q, Huang M, Zhao X, Lu R. Analysis of hyperspectral scattering profiles using generalized Gaussian distribution for prediction of apple firmness and soluble solids content. In: Symposium Conducted at ASABE Annual International Meeting, Louisville, Kentucky, USA, 2011.
Beebe K R, Kowalski B R, Wold H. An introduction to multivariate calibration and analysis. Analytical Chemistry, 1987; 59: 1007A−1017A.
Goodacre R, Timmins E M, Burton R, Kaderbhai R, Woodward A M, Kell D B. Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology, 1998; 144: 1157−1170.
Haaland D M, Thomas E V. Partial least-squares methods for spectral analyses, Relation to other quantitative calibration methods and the extraction of qualitative information. Analytical Chemistry, 1988; 60: 1193−1202.
Haaland D M, Thomas E V. Comparison of multivariate calibration methods for quantitative spectral analysis. Analytical Chemistry, 1990; 62(10): 1091−1099.
Martens H, Naes T. Multivariate Calibration, 1989; second ed., John Wiley & Sons, Ltd., Chichester, United Kingdom.
Park B, Abbott J A, Lee K J, Choi C H, Choi K H. Near-infrared diffuse reflectance for quantitative and qualitative measurement of soluble solids and firmness of delicious and gala apples. Transactions of the ASAE, 2003; 46(2): 1721−1731.
Bowen W J. The absorption spectra and extinction coefficients of myoglobin. Journal of Biological Chemistry, 1949; 179(1): 235−245.
Copyright (c)