Evaluation of grapevine sucker segmentation algorithms for precision targeted spray
Abstract
Keywords: grapevine suckers; image segmentation; color feature; K-means; mean shift
DOI: 10.3965/j.ijabe.20150804.1527
Citation: Xu S S, Li W B, Kang F, Zheng Y J, Lan Y B. Evaluation of grapevine sucker segmentation algorithms for precision targeted spray. Int J Agric & Biol Eng, 2015; 8(4): 77-85.
Keywords
Full Text:
PDFReferences
Takeda F, Drane V, Saunders M S. Inhibiting sprouting in muscadine grapes. Proc. Fla. State Hort. Soc. 1982; 95: 127–128.
Smith R J, Klonsky K M, De Moura R L. Sample costs to establish a vineyard and produce wine grapes. Doctoral dissertation, University of California Cooperative Extension, California, USA, 2010.
Ahmedullah M, Wolfe W H. Control of sucker growth on Vitis vinifera L. cultivar Sauvignon Blanc with naphthaleneacetic acid. Am. J. Enol. Vitic. 1982; 33(4): 198–200.
Reynolds A G. Control of vegetative growth in Vitis by paclobutrazol-implications for winegrape quality. Acta Horticul. 1989; 239: 235–242.
Swetnam T L, Falk D A. Application of metabolic scaling theory to reduce error in local maxima tree segmentation from aerial LiDAR. Forest Ecol Manag. 2014; 323: 158–167. doi: 10.1016/j.foreco.2014.03.016.
Clark M L, Roberts D A. Species-level differences in hyper-spectral metrics among tropical rainforest tree as determined by a tree-based classifier. Remote Sens., 2012; 4(12): 1820–1855. doi: 10.3390/rs4061820.
Rathore V S, Kumar M S, Verma A. Colour based image segmentation using L*a*b* colour space based on genetic algorithm. IJETAE, 2012; 2(6): 156–162.
Peña-Barragán J M, Ngugi M K, Plant R E, Six J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ., 2011; 115(6): 1301–1316. doi:10.1016/j.rse. 2011.01.009.
Søgaard H T, Olsen H J. Determination of crop rows by image analysis without segmentation. Comp. Elect. Agric. 2003; 38(2): 141–158. doi: 10.1016/SO168-1699(02)0014-0.
Kang F, Wang H, Pierce F J, Zhang Q, Wang S. Sucker detection of grapevines for targeted spray using optical sensors. Trans. ASABE. 2012; 55(5): 2007–2014.
George E M, Camargo N J. Verification of color vegetation indices for automated crop imaging applications. Comp. Elect. Agric. 2008; 63(2): 282–293. doi:10.1016/j.compag. 2008.03.009.
Haw C L, Ismail W I W, Kairunniza-Bejo S, Putih A,
Shamshiri R. Colour vision to determine paddy maturity. Int J Agric & Biol Eng, 2014; 7(5): 55–63.
Hlaing S H, Khaing A S. Weed and crop segmentation and classification using area thresholding. IJRET. 2014; 3: 375–382. doi: 10.15623/ijret.2014.0303069.
Kang F. Research on automated grapevine trunk targeted precision sprayer and location and recognition for sucker. Doctoral dissertation. China Agricultural University, Beijing, China, 2011.
Neto J C. A combined statistical-soft computing approach for classification and mapping weed species in minimum-tillage systems. Doctoral dissertation. University of Nebraska-Lincoln, NE, USA, 2004.
Kataoka T, Kaneko T, Okamoto H, Hata S. Crop growth estimation system using machine vision. In Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics 2003, 2003; 2: b1079–b1083. doi:10.1109/ATM.2003.1225492.
Bai X D, Cao Z G, Wang Y, Yu Z H, Zhang X F, Li C N. Crop segmentation from images by morphology modeling in the CIE L*a*b* color space. Comp. Elect. Agric., 2013; 9: 1–34. doi:10.1016/j.compag.2013.08.002.
Li Z, Hong T S, Zeng X Y, Zheng J B. Citrus red mite image target identification based on K-means clustering. Trans. CSAE, 2012; 23: 47–154. (in Chinese with English abstract)
Li G L, Ma Z H, Huang C, Chi Y W, Wang H G. Segmentation of color images of grape diseases using K-means clustering algorithm. Trans. CSAE, 2010; 26(14): 32–37. (in Chinese with English abstract)
Zheng L Y, Zhang J T, Wang Q Y. Mean-shift-based color segmentation of images containing green vegetation. Comp. Elect. Agric., 2009; 65(1): 93–98. doi:10.1016/j.compag. 2008.08.002.
Zheng L Y, Shi D M, Zhang J T. Segmentation of green vegetation of crop canopy images based on mean shift and Fisher linear discriminate. Pattern Recogn. Lett. 2010; 31(9): 920–925. doi:10.1016/j.patrec.2010. 01.016.
Si Y S, Liu G, Gao R. Segmentation algorithm for green apples recognition based on K-means algorithm. Trans. CSAM, 2009; 40: 100–104. (in Chinese with English abstract)
Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. PAMI 2002; 24: 603–619. doi:10.1109/34.1000236.
Zhang D B. Research on plant’s three-dimensional information detection and visual servo controlling technology. Doctoral dissertation, China Agricultural University, Beijing, China, 2014.
Copyright (c)