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Abstract: Soil physicochemical properties, climate, and human activities can create barriers to arable land in varying degrees,
affecting land quality. The Huanghuaihai Plain (HHHP) is an important agricultural region in China. To clarify the factors
influencing the formation of barriers to arable land in this area and their spatial distribution characteristics, this study took the
northern part of the HHHP as the research object, screened and quantified the factors influencing barriers to arable land,
constructed a multifactor-based arable land barrier evaluation index system, and used the index system to spatially classify the
barriers to arable land. The results showed that 1) 16 evaluation indicators including the five dimensions of chemical indicators,
physical indicators, biological indicators, management measures, and plot environment were screened out through the random
forest model; 2) the average rating of the multifactor barrier for arable land in the northern part of the HHHP was 5.3,
exhibiting a medium level, and the area of grade 5 and grade 6 land accounted for the highest percentage, at up to 30%; 3) the
order of barrier degree of main barrier factors from high to low was organic matter>salt content>available phosphorus>
available potassium>irrigation capacity>soil texture class>soil bulk density; and 4) according to the idea of ranking barrier
factors, 15 types of barriers were obtained and then divided into the three major barrier area categories of organic matter,
irrigation capacity, and salinity, and the prioritization of cropland quality improvement was determined according to the
sequential order of the combination of barrier factors. A preliminary multifactor barrier index system for croplands was
constructed, which can provide a reference for cropland barrier abatement and the precise improvement of cropland quality in

the HHHP area.
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1 Introduction

High-quality land, as a valuable natural resource, is an
important safeguard for maintaining ecological balance, food
production, and human health™. However, the degradation of
ecosystem services, climate change, biodiversity loss, water
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scarcity, and reduction in arable lands®® pose significant threats to
soil quality!”. These unfavorable conditions affect crop growth,
development, and yield formation and influence the quality of
crops, with adverse effects on the ecological environment. In this
context, the systematic identification of the factors hindering the
cultivation of arable land, building a mechanism to reduce barriers,
and realizing the precise improvement of the quality of arable land
have become research focuses in the field of global land science.
This issue is particularly urgent in China, which is undergoing rapid
urbanization and industrialization. Due to the special national
conditions of a large population base and scarce arable land
resources, China faces the dual challenges of arable land protection
and food security, which are more complicated than those of other
countries'.

Soil is a complex ecosystem in which various physical,
chemical, and biological traits can affect soil quality to varying
degrees, creating barriers®'”. Much useful research has been
conducted on the factors that influence soil quality. For example,
Yang, He, Yan, and Qu"""", among others, proposed several factors
closely related to barriers to arable land quality, such as heavy
metals, soil water content, AP, pH, and cropland efficiency, in the
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North China Plain, Loess Plateau, Nanxiong Basin, and
Northeastern Black Soil Region of China, respectively. The
aforementioned studies have revealed that the majority of existing
research concentrates on a single factor in the formation of barriers
to arable land. However, studies on the synergistic or interlocking
effects of these factors are scarce. In the soil ecosystem, no factors
exist in isolation; rather, they operate through mutual constraints or
promotions to impact soil quality. Furthermore, the findings of the
aforementioned studies indicate that the barrier factors affecting
arable land exhibit significant variation across different soil types,
posing considerable challenges in determining the specific barrier
factors affecting arable land. Consequently, the development of a
multifactor-based evaluation index system for barriers to croplands
and the quantification of the interrelationships among the factors
represent crucial research avenues for future identification and
mitigation of barriers to croplands.

Many useful studies have been conducted by previous authors
to screen and evaluate barrier factors. For example, in the screening
of evaluation indices, studies have been conducted to assess the
quality of arable land using the random forest method">'" to assess
the importance of features and the principal component analysis
(PCA) method to construct a minimum dataset (MDS)!""*. The
majority of existing research in this field has employed the
hierarchical analysis method (AHP)?"! and the entropy weight
method™ to determine the weights and degree of affiliation. The
affiliation function reflects the degree to which an element belongs
to a certain fuzzy set, which can be broadly classified into three
main categories: triangular, trapezoidal, and Gaussian functions”?",
with regional variations influencing their performances™'. The final
physical and chemical properties of the soil from the soil health
status, utilization conditions, ecological security, arable land
productivity, and other latitudes were used to construct an
evaluation index system™**. Nevertheless, existing research on the
construction of an index system for evaluating the quality of arable
land lacks a systematic evaluation from the perspective of exploring
the synergy of barrier factors from the common departure of
multiple dimensions. Therefore, it is important to construct a
multifactor barrier evaluation index system for arable land from the
perspective of the mechanisms and paths of arable land barrier

formation. This will facilitate a more scientific and accurate
evaluation of the index system of arable-land barriers and enable
targeted conservation and the upgrading of land strength.

The Huanghuaihai Plain (HHHP) is one of the main grain-
producing areas in China and plays a key role in guaranteeing
China’s food security™". However, in recent years, with the
deterioration of climatic conditions, ecological pollution, and
decline in soil fertility, the quality of arable land in the HHHP has
been seriously affected, further threatening regional food security.
Therefore, accurately identifying the barriers to croplands in the
HHHP and improving the quality of croplands have become key
problems that need to be solved in this district. In this study, the
barriers to arable land in the northern part of the HHHP were taken
as the object of study, and the screening and evaluation of the
barriers to arable land and the classification of the degree of barriers
to arable land in the district were carried out using mathematical
models, such as random forest and barrier degree models. This
study aims to clarify the factors and combinations of driving
mechanisms of barriers to arable land quality in the northern part of
the HHHP and to quantify the spatial distribution of the degree of
barriers to arable land quality in the district. This study provides a
reference for the construction of technical systems to improve the
quality of arable land and reduce barriers to arable land in HHHP
and similar regions.

2 Material and methods

2.1 Study area and data sources

The data collection area for this study was the northern part of
HHHP (113°88 'E-117°44 'E, 37°50 'N-39°58 'N), comprising 49
county-level administrative districts and a total land area of
approximately 8x10° hm* This region is the most important winter
wheat-summer maize one-year grain-producing area in China. The
fundamental data for this study were sourced from the five-year
mean data provided by the Department of Agriculture and Rural
Affairs of Hebei Province from 2017 to 2021 (Table 1).
Topographic data were primarily sourced from the geospatial data
cloud (http://www.gscloud.cn/) to obtain 30x30 m DEM data,
which were then integrated with the grading criteria for a
comprehensive assessment.

Table 1 Names of indicators in the study area and corresponding abbreviations

Indicator name Abbreviation Indicator name Abbreviation Indicator name Abbreviation
Altitude/m ALT Barrier Layer Type BLT Total Nitrogen/g-kg TN
Longitude LON Barrier Layer Depth BLD Available Phosphorus/mg-kg™ AP

Latitude LAT Barrier Layer Thickness/cm BL Available Potassium/mg-kg AK
Soil Type STL Irrigation Capacity IC Slowly Available Potassium/mg-kg™! SRK
Soil Subtype STB Trrigation Method ™ Soil pH pH
Soil Group STG Water Source Type TWS Available Sulfur/mgkg’ AS
Soil Series STS Drainage Capacity DC Available Copper/mg-kg ACu
Parent Material PM Cropping System CS Available Zinc/mg-kg! AZn
Landform Type LFT Annual Cropping System PCS Available Iron/mg-kg AFe
Soil Texture Class TC Cleanliness Degree AP Available Manganese/mg-kg' AMn
Topographic Position TP Main Crop Name AK Available Boron/mg-kg' AB
Slope Gradient/(°) FS Annual Yield/kg-hm SRK Available Molybdenum/mg kg™ AMo
Groundwater Depth/m DGW Biodiversity pH Available Silicon/mg-kg ASi
Effective Soil Depth/cm ESD Farmland Afforestation AS Lead Pb
Plough Layer Thickness/cm PLD Salinization Type ACu Chromium/mg-kg Cr
Plough Layer Texture PLT Degree of Salinity AZn Cadmium/mg-kg! Cd
Soil Bulk Density/g-cm™ SBD Salt Content AFe Mercury/mg-kg Hg
Obstacle Factor OF Cleanliness Degree AP Arsenic/mg-kg! As
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Note: The study area is located in the northern Huanghuaihai Plain.

Figure 1 Geographic location of the study area

2.2 Research methods
2.2.1 Screening of evaluation indicators

The random forest model was created using the “Random
Forest” package in R software version 4.1.1 to identify 53 different
factors that influence the yield (GY). The out-of-bag error (OOB
error) was used to calculate the importance of the characteristic
variables (I). The significance of the variable (X’) to the j is
expressed as [I(X’)]. Coefficient of determination (R?), Relative
prediction deviation (RPD), Root mean square error (RMSE), and
Mean absolute error (MAE) were used as metrics to evaluate and
validate model accuracy”'’. In this study, the random forest model
was constructed with an R? value of 0.789, RPD of 2.030, RMSE of
61.925, and MAE of 34.997.
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2.2.2  Constructing indicator weights and affiliations
1) AHP method
AHP, proposed in the early 1970s, integrates quantitative and

RMSE = Q)

qualitative aspects to determine the weights of individual evaluation
indicators (Table 1). To maintain perceived consistency, this study
verified the consistency by calculating consistency ratios. These
ratios were used to gauge the level of consistency between pairwise
comparisons of different criteria, which is a key strength of the
AHP method. The fundamental steps of the AHP approach are as
follows®™:
(1) Building judgment matrix:

U = (auv)mxm (6)

U is an mxm judgment matrix that represents the relative
importance of factors in the same hierarchy; the matrix element a,,
represents the importance of factor u relative to factor v, and its
value ranges from 1 to 9.

(2) Compute the maximum eigenvector of the judgment matrix.

Uy = AW (7)

U, is the product of the judgment matrix U and the
eigenvector w. A, is the maximum eigenvalue of the judgment
matrix U, which is used to measure the consistency of the matrix. w
is the eigenvector corresponding to the maximum eigenvalue A,
which represents the weight of each factor.

(3) Using the consistency test, the consistency indicator CR is
calculated as follows:

CI
CR=— 8
R (®)
where, CI is the consistency index and RI is the randomized
average consistency index; when CR<O0.1, the judgment matrix
passes the consistency test.

(4) The CI was calculated as follows:

cr= fm ot ©)
n—1

(5) The weight W, of each indicator was obtained after
normalization.

2) Calculation of the degree of the affiliation of each indicator

To establish a relationship between the selected evaluation
indicators and the quality of cultivated land, the national standard
for Cultivated Land Quality Grade (GB/T33469-2016) was
referenced in conjunction with a fuzzy mathematical method based
on the characteristics of the northern HHHP. This resulted in the
classification of the relationships into above-the-fold, peak,
conceptual, and selected numerical categories. The conceptual
indicators are non-numerical and partially numerical and are not
linearly related to the quality of cultivated land. Therefore, an
affiliation function is not necessary to establish a linear relationship
between these indicators and the arable land quality.

Table 2 Cropland barrier evaluation indicator affiliation function

Membership function type Formula Marginal notes Evaluation indicator
i < . L. .
0. ui <u y; is the affiliation of the ith factor;
1/ [1 rai(ui— i), up <up < Ci] u; is the measured value of the sample;
Above-the-fold function yi= c; is the standardized indicator; SOM, AP, AK, TN
(i=1,2, ...,m) a; is the indicator coefficient;
L o <u Uy is the lower limit value of the indicator
b 1 1
0, ui>uy oru; <up
Peak function o 1/ [1 +ai(u— C.)z} wn << u;1 and up are the upper and lower limit values of H. SBD
Yi= M= CD | il = s e the indicator, respectively pH.

1, uj=c;
Conceptual indicators -

Selected numerical indicators -

- TC, PLT, BD, TP, IC, DC
- ESD, PLD, DGW, SC
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Table 3 Affiliation of indicators for evaluating barriers to cropland

Dimensions
Degree of . ..
affiliation Conceptual index Numerical index
PLT TC TP BD IC DC PLD ESD DWG SC
Medium Low altitude alluvial plain/Low altitude alluvial Full

1.00 - flood plain/Low altitude alluvial lacustrine Abundant  Fully satisfied vy >20 >100 >10 <0.02

loam . - satisfied

plain/Plain low grade
0.95 - Sticky type Low altitude erosion and denudation plains - - - - - - -
0.94 Light loam - - - - - - - - -
Loose on top and tight on
0.93 - - - - - - - - -
bottom type

092  Heavy . . . .- L

loam
0.90 Loamy Low altitude alluvial floodplains/Low altitude ) } } ) B ) )

’ type alluvial depressions
0.88  Clay loam - - - - - - -
0.85 ) Firm type Low altitude a}lluVIal ﬂ(?odplaln low terrace/Low Satisfied Satisfied ) B ) )
altitude fluvial low terrace

Sandy . Low altitude marine alluvial plains/Plains . 15- 60- 0.02-
0.80 loam Sandwich type middle order Average 20 100 10-5 0.05
075 ) Sponge type/Tight on top ) } } } ) B ) )

’ and loose on bottom type
Low altitude marine depressions/Low altitude Largely Largely

0.70 . Loose type river high terraces . satisfied satisfied -7 ) .
0.65 - - Erosion and denudation of low altitude low hills - - - - - - -
0.60 - Through-body sand Plains higher Not abundant - - <15 30-60 <5 %%58—
0.50  Sandy Soil - - - Not satisfied Not satisfied - - - -
0.40 - Thin layer type High hills at altitude in erosion and denudation - - - - <30 - 2>0.08
0.35 - - Erosion and denudation of small undulating mesas - - - - - - -
0.20 - - Erosion and denudation of the great rolling hills - - - - - - -

2.3 Evaluation of cropland barrier levels

The cropland quality was divided into ten grades using the
equidistant method, with grade 1 being the lowest obstacle and
grade 10 being the highest. The data were then spatially interpolated
using ArcGIS 10.2 software to obtain the evaluation results of the
multifactor obstacle grades of the cropland in the study area.

QZZ(MiXNi) (10)

where, Q is the multifactor barrier composite index for the grain
fields, M; is the weight of the /" indicator, and N, is the degree of
affiliation of the j® indicator.

Average grade of barriers to cultivation=

Z (Cropland obstacle class x area of that class)

(11)

Total area of cultivated land

2.3.1 Obstacle diagnosis model
This study referred to the calculation method of Cui et al.”* and
impairment degree model to explain the primary and secondary
relationships among impairment factors. This study categorized the
degree of indicator impairment into four levels: no obstacle (0),
mild obstacle (0%—-10%), moderate obstacle (10%-15%), and
severe obstacle (>15%).
(1-F;) xW,
0,=— % 100% (12)

J

S [(-F)xw,)

i=1

where, O,; is the barrier value of the j® indicator in the i® study
area, I'; is the factor contribution, and W;; is the weight of the
indicator. To further clarify the synergistic relationship between
barrier factors, evaluation indicators with a barrier degree greater
than 5% were selected as key indicators for the analysis.

2.3.2 Barrier factor combination ideas

The idea of barrier zoning for the study area is as follows: use
ArcGIS 10.2 software to rank the seven barrier factors and select
the first-, second-, and third-level barriers. When the barrier degree
of the first barrier factor reaches a severe barrier (=15%) and the
second and third barrier factors are moderate or less (<15%), the
evaluation unit for barriers to arable land is determined to be an area
of the “first barrier factor” type. When the first and second barrier
factors reach the level of severe barrier (>15%) and the third barrier
factor is at the level of moderate barrier or below (<15%), the
evaluation unit of barriers to arable land is determined to be an area
of the type “first barrier factor - second barrier factor”. When the
primary, secondary, and tertiary barrier factors all reach the level of
severe barrier (=15%), the arable land barrier evaluation unit is
determined to be a “primary barrier factor - secondary barrier factor -
third barrier factor” type area. When the first, second, and third
barrier factors are all at the level of moderate barriers or less (<
15%), the evaluation unit for barriers to arable land is determined to
be an area of the “first barrier factor” type.

3 Results

3.1 Screening of factors affecting cultivated land quality

In Figure 2a, the first 16 variables of the random forest model
are listed according to the OOB error, which is more sensitive to the
evaluation results. The five most important variables were SOM,
pH, TN, AP, and SC. The following characteristics of each indicator
were considered: physical soil indicators (PLD and SBD), chemical
indicators (SOM, pH, TN, AP, AK, and SC), biological indicators
(BD), plot environments (PLT, TP, TC, and ESD), and management
measures (IC, DC, and DGW). Among these, soil chemical
indicators accounted for the highest percentage of the variables
(83%), followed by plot environment (8%), physical soil indicators
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(3.6%), management measures (4.2%), and biological soil indicators
(1.2%). Among the weights assigned to the indicators, irrigation
capacity had the highest weight, followed by tillage texture and
texture configuration. Among the chemical indicators, organic
matter had the highest weight and biodiversity had the lowest
weight (Figure 2b).

Organic matter Organic matter

Total nitrogen Total nitrogen
Available phosphorus Available phosphorus
Salt content Salt content

Available potassium Available potassium

Soil bulk density
Plough layer thickness

Soil bulk density
Plough layer thickness

Biodiversity Biodiversity

Plough layer texture
Soil texture class
Topographic position
Effective soil depth

Plough layer texture
Soil texture class
Topographic position
Effective soil depth

Chemical indicator
m Physical indicator
= Biological indicator
= Plot environment
B Management measures

Groundwater depth
Irrigation capacity
Drainage capacity

Groundwater depth
Irrigation capacity
Drainage capacity

0 0.04 0.08 0.12

Weights
b. Indicator weighting

0 10 20 30 40
Significance
a. Random forest importance ranking
Figure 2 Ranking of importance and weighting of indicators for
evaluating barriers to cropland

3.2 Barrier class of arable land in the study area
The range of the composite index of barriers to arable land in
the northern part of HHHP was 0.620 736-0.975 018, which yielded

A

‘Level of barrier

..

a. Spatial distribution of cropland barrier levels map

Area proportion/%

an average grade of 5.3 for multifactorial barriers to arable land,
indicating a medium level of severity. In the entire range of graded
classes, 10%-15% were classified as classes III, IV, V, VI, VII, and
VIII. The highest percentage was observed in classes V and VI,
which together accounted for 30%. Meanwhile, 0%-10% were
classified as class I, class II, class IX, and class X. Class X
constituted the lowest proportion (3%). Lands classified as classes
I-1IV were distributed across a vast expanse of the southwestern and
northern regions of the study area. Lands designated as classes
V-VII exhibited a more dispersed pattern and were situated in the
western, central, northeastern, and southeastern parts of the study
area. Conversely, high-grade lands, classified as classes IX—X, were
concentrated in the northwestern and eastern regions of the area.
3.3 Diagnosis of single-factor barriers

As shown in Figure 4, chemical indicators exhibited the highest
barrier degree (42.21%). Among chemical indicators, SOM and SC
had the highest barriers, at 16.37% and 15.79%, respectively. The
level of management measures had IC with the highest barrier
degree (9.52%). The plot environment had the highest TC barrier
degree at 6.89%, physical indicators had the highest BD barrier
degree at 5.44%, and biological indicators had the lowest barrier
degree at 0.97%. The seven indicators with obstacle degrees greater
than 5% were SOM, SC, AP, AK, BD, TC, and IC, which were the
major barriers to croplands in the northern HHHP.

16 |
14 |
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4
2
0
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b. Percentage of area of cropland barrier levels
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Figure 3 Map of multifactorial obstacle classes for cropland and the percentage of area in obstacle classes

Organic matter

pH

Total nitrogen
Available phosphorus
Salt content
Available potassium

Soil bulk density
Plough layer thickness

Biodiversity

Plough layer texture
Soil texture class
Topographic position
Effective soil depth

Chemical indicator
W Physical indicator
W Biological indicator
Groundwater depth mm— Plot environment

Irrigation capacity W Management measures
Drainage capacity \ X X L L ,

0 3 6 9 12 15 18

Degree of barrier

Figure 4 Diagnostic results of cropland barrier factors

3.4 Multifactor barrier types

In accordance with the concept of barrier factor ordering, 15
barrier types were identified and subsequently classified into three
principal categories of barrier areas: SOM, IC, and SC. The SOM
barriers are divided into six types of barriers: SOM, SOM-IC, SOM-
SC, SOM-SC-AP, SOM-AP, and SOM-TC. The IC barriers are

categorized as IC, IC-SC, IC-SC-SOM, IC-SOM, IC-SOM-SC, and

IC-TC. The SC obstacle zone is divided into three types of
obstacles: SC, SC-SOM, and SC-SOM-AP. The SOM barrier type
area has the largest area of 2 297 783.27 hm’, accounting for
61.71% of the total area of the study area, with a relatively
decentralized distribution. The IC barrier type area covers an area of
1 244 699.89 hm’, accounting for 33.43% of the total area of the
northern part of the HHHP, and it is mainly located in the western,
southwestern, and northeastern parts of the study area. The SC
barrier area is the smallest, which is 181 334.23 hm?, accounting for
4.87% of the total area of the study area, and is mainly distributed in
the southeastern coastal area of the study area.

4 Discussion

4.1 Construction of the evaluation index system for barriers to
arable land

In the screening process for evaluation indicators, a random
forest model was employed to identify 16 representative evaluation
indicators. This approach effectively identifies key variables
through feature importance ranking, and its objectivity has been
extensively validated in soil quality assessment research”*l. For
instance, Wang et al.?” utilized random forest modeling to calculate
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Note: Figure 5a shows the general distribution of barrier types, Figure 5b shows the distribution of organic matter barrier types, Figure 5c¢ shows the distribution of

irrigation capacity barrier types, and Figure 5d shows the distribution of salinity barrier types.

Figure 5 Types of barriers to cropland

the feature importance of red-edge parameters, whereas Cao et al."™

incorporated multiple environmental factors as downscaling
variables for indicator screening. These methodological approaches
are aligned with the algorithmic design employed in this study.
Although random forest modeling objectively quantifies indicator
through gain

methodological uncertainties persist. First, the model demonstrates

contributions information ratios, inherent
sensitivity to initial parameter configurations, potentially affecting
the feature importance rankings®. Second, the default assumption
of additive relationships among input variables may neglect
nonlinear interactions affecting cultivated land degradation™*”.
Significant variations emerged across distinct topographic units
regarding the regional adaptability of the indicator systems. To
illustrate this, in the case of China’s freshwater lake wetland
region™*, a comprehensive evaluation index system was constructed
using SOM, TN, AP, AK, pH, TP, and TK. In contrast, for the hilly
regions of East China “?, indicators such as SOM, AP, AK, and TP
were selected. In a study on the US federal state wetland region'*’,
indicators for the evaluation of MDS were screened, including pH,
TN, BD, and total organic carbon (TOC). From this, it can be seen
that chemical indicators such as SOM, pH, TN, AP, and AK have
been widely studied by various scholars, which is consistent with
the results of this study. Further analysis revealed potential
uncertainties in constructing the indicator system. At the data
collection level, the density of the spatial distribution of soil
samples may not be able to fully capture the microtopographic
variability. At the temporal dynamics level, data collected at a

single time point makes it difficult to characterize the interannual
fluctuations in soil properties. Future research should enhance
system robustness through spatiotemporal interpolation modeling
and dynamic threshold adjustment mechanisms.

Notably,
fundamental differences in research scales and objectives. While the
analysis-derived MDSH!
evaluation systems, the large-scale study encompassing diverse

indicator selection discrepancies stem from

principal component simplifies the
landforms requires multilevel indicator frameworks. This approach
aligned with the recommendations of Biinemann et al.*”! that
hierarchical systems should be employed at scales exceeding 1:
100 000. Furthermore, crop-specific studies, such as that of Sanchez-
Guzman et al. on maize cultivation, introduced specialized
indicators (SMR and qCO,) in addition to conventional parameters.
By incorporating regional indicators (SC, PLT, and TC) while
preserving the comparability of core parameters (SOM, pH, and
TN), this study enhanced the systemic interpretability. Future
investigations should adopt context-specific indicator selections
based on spatial scales and research objectives.
4.2 Classification of types of barriers to arable land

Soils are the basis of human survival, however, they are
complex and fragile ecosystems in which small changes in certain
indicators can lead to a decline in the productive capacity of the
soil, thereby reducing its ability to self-regulate and recover. TN,
SOM, pH, available nitrogen, and CEC were found to be the
primary degradation factors in the Hetao Plain”, whereas the
Yangtze River Basin®” showed limitations in terms of ESD, SOM,
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pH, IC, OF, and tillage layer texture. Jiangxi’s red soil sloping
fields™ demonstrate high PLD constraints, in contrast to the
elevation and IC dominance in the northern Tianshan Mountains™’.
This study revealed that SOM, SC, AP, AK, IC, TC, and BD are
critical constraints in the northern HHHP, aligning with previous
findings on the significance of SOM and AK. These results not only
confirm the pivotal role of SOM in soil quality assessment but also
guide targeted soil improvement strategies.

Further analysis of the above revealed that several barrier
factors were specific to croplands in different regions. TN and pH
constraints in the Hetao Plain reflect arid salinization
characteristics, whereas northern HHHP SOM and AK depletion
correlate with high cropping intensity. The ESD and tillage layer
issues of the Yangtze Basin are linked to hilly erosion processes, in
contrast to the flat terrain of the northern HHHP, which minimizes
such effects. A comparative analysis showed that Jiangxi’s PLD
constraints are associated with acidic soil structural instability,
whereas Xinjiang’s IC issues stem from irrigation practices. The
northern HHHP exhibits compound salinity-nutrient constraints due
to groundwater overexploitation.

Notably, the northern HHHP exhibited significant spatial
heterogeneity, with 15 identified degradation types (Figure 3a). This
variation stems from a combination of the internal topography,
climate, and pedological diversity. Specifically, the northern plains
experience increased soil compaction due to urban-induced
fragmentation, whereas the central and southwestern grain belts face
depletion of SOM and AK as a result of intensive cultivation.
Irrigation limitations are a prominent issue in western mountainous
areas, whereas the eastern riverine zones contend with salt
accumulation. Furthermore, spatiotemporal variations in cropping
indices and management practices have exacerbated spatial
disparities.

The results of the aforementioned studies provide a wealth of
insight that can inform subsequent research on the barriers to
cropland abatement in diverse ecological settings. However, a
notable limitation of these studies is their exclusive focus on single-
factor barrier assessment. From the complexity of soil ecosystems,
it can be inferred that the quality of arable land itself contains
several intertwined influencing factors. In this regard, this study
proposed a multifactor barrier evaluation index system for arable
land based on a combination of barrier factors using an obstacle
diagnosis model and the concept of barrier factor combination.
Furthermore, this study quantitatively classified barriers to arable
land in the northern part of the HHHP in China. However, this study
was deficient in its exploration of the synergistic relationship
between barrier factors; the concept of establishing a multifactor
barrier evaluation index system through a combination of barrier
factors is of reference value. Further research will be conducted to
gain a deeper understanding of the synergistic mechanisms and
driving pathways among barrier factors. The technical pathways of
multifactor barrier abatement will be integrated, validated, and
optimized, providing a basis for the precise enhancement of the
quality of arable land in the HHHP area.

5 Conclusions

A random forest model was employed to screen 16 evaluation
indicators affecting the quality of arable land in the northern part of
the HHHP. These included SOM, AP, and AK. The contributions of
these indicators were ranked. Furthermore, based on the affiliations
and weights of the aforementioned evaluation indicators, the
average rank of the multifactor barriers to arable land in the

northern part of the HHHP was determined. The extent of the
barriers posed by the evaluation indicators of arable land in the
northern part of the HHHP was quantified and a multifactor
evaluation index system for barriers to arable land was proposed
based on a combination of primary and secondary barrier factors.
The aforementioned indicator system was employed to categorize
the barriers to arable land in the northern part of the HHHP into
three principal categories: SOM, IC, and SC. The spatial
distributions of these barrier areas were determined.

Based on the results of this research, it is recommended that the
relevant decision-makers make precise resource inputs, allocate
agricultural resources according to the dominant factors in different
classify management by zones,
differentiated protection and utilization policies for different

obstacle zones, formulate

obstacle zones, establish a long-term dynamic monitoring system to
monitor and evaluate the quality of arable land regularly so that
measures can be adjusted promptly, strengthen the technical training
of farmers, and popularize appropriate agricultural technologies to
improve the quality of arable land in the northern part of the HHHP
in various aspects.
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