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Abstract: As a crucial fruit tree crop, the health and yield of apple trees are intricately linked to soil moisture conditions. This
study aimed to integrate the enhanced WOFOST model with the HYDRUS model to simulate the growth and development of
apple trees, as well as the dynamics of soil moisture under varying degrees of water deficit. The outputs of evapotranspiration
(ETy) and leaf area index (LAI) from the WOFOST model during the apple growth phase were specifically integrated with
HYDRUS-1D. These parameters served as intermediaries to assess the impact of different water deficit scenarios on apple tree
growth and soil moisture content. The experimental design included three levels of water deficit treatments in addition to
control, with irrigation volumes for the deficit treatments set at 85%, 70%, and 55% of the control’s volume, respectively. The
model-predicted LAI across all irrigation treatments exhibited an R* range of 0.89-0.95, a normalized root mean square error
(NRMSE) between 8.02% and 14.57%, and yield prediction errors ranging from 6.27% to 9.61%, closely aligned with
empirical data. The accuracy of simulated soil moisture content was enhanced in the 0-30 cm layer, with a slight decrease in
accuracy observed in the 30-60 cm layer. For each irrigation treatment, the R* values for simulated soil moisture content ranged
from 0.77 to 0.89 in the 0-30 cm layer and from 0.75 to 0.81 in the 30-60 cm layer. This study validated the capability of the
WOFOST-HYDRUS model to accurately simulate the effects of varied water deficit treatments on soil moisture, LAI, and
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apple tree yield, providing valuable insights for developing optimal irrigation strategies.
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1 Introduction

The WOFOST model, renowned for its high accuracy,
simulates the entire crop life cycle, from sowing to maturity. It
accounts for environmental factors such as daily solar radiation,
temperature, and precipitation, while also integrating the unique
attributes of the crops, thereby ensuring a comprehensive and
precise simulation outcome. In their research, Bai et al.l"?
successfully modeled the growth of date palms using WOFOST,
demonstrating its potential for simulating apple tree growth as well.
However, despite the WOFOST model’s strengths in reproducing
crop growth and development under varying conditions, its reliance
on a simplified “bucket model”™ for soil water movement fails to
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account for lateral flow and the effects of moisture and nutrient
distribution across soil layers on crop growth. This simplification
limits the model’s ability to accurately simulate critical hydrological
processes - including soil moisture fluctuations, evaporation, and
transpiration - which are pivotal to crop growth and development.
The accurate simulation of hydrological cycle variables is essential
for assessing the impact of environmental changes on crop growth
and development, particularly in arid regions. Enhancing the model’
essential for accurately
simulating crop transpiration under water stress, thereby improving

s hydrological cycle calculation is

the model’s predictive accuracy regarding the effects of water stress
on growth, development, and yield. Hydrological models, such as
HYDRUS, serve as instrumental tools for simulating water cycle
processes within water resource systems. In agricultural
production, these models can evaluate the impact of various
irrigation and drainage strategies on crop growth and yield”, thus
supporting sustainable agricultural management. Consequently,
integrating the strengths of both models can enhance crop growth
simulation. The WOFOST and HYDRUS models have been
extensively integrated with others'; Shelia et al.? combined
HYDRUS-1D with DSSAT to simulate soil moisture dynamics,
facilitating the coupling of crop growth with hydrological models.
Kodes et al.® utilized HYDRUS-1D to simulate 16 scenarios,
featuring free drainage or a fixed water table at a depth of 250 cm,
thereby showcasing the influence of groundwater on soil moisture
balance. Zhou et al.”’ coupled HYDRUS-1D with WOFOST for
wheat planting and irrigation simulation, optimizing irrigation
strategies and simulating wheat production under fluctuating water
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conditions. Li""established a bidirectionally coupled crop growth-
hydrological model by integrating WOFOST with HYDRUS-1D.
Given the limited research on fruit tree simulation using WOFOST
and its constraints in accurately capturing detailed soil moisture
stratification, this study employs the WOFOST-HYDRUS coupling
to simulate and analyze the LAI, yield, and soil moisture content of
apple trees. This approach enhances the accuracy of growth
simulations through WOFOST’s sensitivity analysis and parameter
calibration. The specific procedure involves inputting the ET, and
LAI as simulated by the WOFOST model, throughout the entire
growth period as intermediate variables into the HYDRUS model.

2 Materials and methods

2.1 Experimental field site overview

The experimental work was conducted from March to
September 2022 at the Fuguo Feng Agricultural Co., Ltd. apple
planting demonstration park, where a rain-shelter system was
implemented at the experimental site. Located in Fufeng County,
Baoji City, Shaanxi Province, China (coordinates: 107°53 "20"E,
34°28 '49"N), the park is situated at an elevation of 735 m and
experiences a warm temperate continental monsoon climate. The
region receives an average annual precipitation of 569.9 mm,
primarily occurring from July to September 2022. The park’s soil is
classified as loamy, with a pH value of 8.42 and a bulk density of
1.55 g/em’.

2.2 Experimental treatments

The experimental subjects consisted of “Gala” apple trees
grafted onto M9-T337 rootstocks. These 7-year-old dwarf trees
were densely planted with dimensions of 3 m x 1 m for plant height
and row spacing. The growth period was delineated into four
distinct stages: bud break and flowering, vegetative growth, fruit
enlargement (subdivided into Phase 1 and Phase II), and fruit
maturation.

An experiment assessing continuous water deficit was
established, featuring three water deficit treatments and one control
treatment (CK) for each growth stage. The control treatment
irrigation volumes were determined based on field capacity,
specified as 0.0635 m*/plant for Phase I, 0.6345 m’/plant for Phase II,
0.5979 m*/plant for Phase 111, and 0.4493 m*/plant for Phase IV. The
water deficit treatments were configured to 85%, 70%, and 55% of
the CK treatment volumes, designated as low deficit (LD), moderate
deficit 1(MD1), and moderate deficit 2 (MD2), respectively. To
mitigate the impact of lateral soil moisture migration, a barrier film
was installed 1.0 m beneath the soil surface in each plot,
supplemented by protective rows at the plot boundaries. Uniform
agronomic practices, including weed management, pruning, and
pesticide application, were applied across all treatments.

2.3 Measurement and collection of experimental data

In this study, the data utilized encompass verification data for
apple trees from the WOFOST model as well as parameter data for
growth simulation.

2.3.1 Soil moisture content verification data measurement

Within each cohort of apple trees, a random sample of three
trees was selected, resulting in a total of nine trees per treatment
group. Soil moisture probes were strategically inserted at a depth of
15-20 cm radiating from the base of each tree trunk. Measurements
of soil moisture content were conducted on the orchard soil profile,
extending from 0 cm to 60 cm in depth at 10 cm increments,
utilizing the TRIME-TDR soil moisture sensing system. The mean
of these measurements was calculated, with assessments performed
both pre- and post-irrigation at each developmental phase.

2.3.2 Leaf area index verification data measurement

In each group of apple trees, one leaf was randomly selected
from the upper, middle, and lower canopy layers, resulting in a total
of nine leaves per treatment. Photographs were taken with a fisheye
camera on specific dates: April 14th, May 2nd, May 24th, June
13th, June 24th, and July 8th. LAI was subsequently measured
using the Plant Canopy Analysis System software, and the average
value of the measurement results was calculated for each date.

2.3.3 Yield verification data measurement

Following the maturation of the apples, three apple trees were
randomly selected from each treatment group. The apples were
harvested, weighed, and counted individually. The average weight
of a single apple was multiplied by the total number of apples on
each tree to calculate the yield per tree.

2.3.4 WOFOST simulation data collection

The operation of the WOFOST model requires both
meteorological and soil data. The necessary meteorological data
were obtained from the China Meteorological Data Sharing Service
Platform, specifically from the Fufeng County station, covering the
period from March to August 2022. Key meteorological parameters
include saturation vapor pressure, average wind speed, daily
minimum temperature, daily maximum temperature, daily radiation,
and cumulative precipitation. The utilization of these precise and
comprehensive datasets serves as the foundation for the simulation
operations of the WOFOST model and its coupling with HYDRUS,
thereby ensuring the accuracy and credibility of the simulation
outcomes.

The construction of the soil parameter database in this study
integrates field surveys with literature research. The core attributes
of the soil have been established, including soil bulk density,
particle size distribution, field capacity, and wilting coefficient. The
accuracy of the measured soil data is crucial for soil management,
crop growth, and irrigation strategies. The bulk density is measured
at 1.55 g/cm’, the volumetric water content at wilting point is 0.12
m?/m?3, the field capacity is 0.32 m’/m’, the gravel content is
10.00%, the silt content is 72.20%, the calcium carbonate content is
7.20%, the cation exchange capacity is 10.40 cmol/kg, and the pH is
8.42.

2.4 Introduction and coupling analysis of the WOFOST and
HYDRUS models
2.4.1 Overview of the WOFOST model

The WOFOST model, developed
Wageningen University in the Netherlands and the World Food
Studies Center, is a crop growth simulation tool that enables the
assessment of yield under three distinct growth conditions:
potential, water-limited, and nutrient-limited scenarios!"'. This
model is primarily utilized for quantitative land evaluation, regional
yield forecasting, risk analysis, and the assessment of interannual
yield variability and the impacts of climate change. The WOFOST
model is grounded in the principles of crop physiology and ecology,
incorporating processes such as photosynthesis, respiration,
transpiration, and dry matter distribution. To effectively apply the
WOFOST model, it is essential to compile meteorological data,
which includes parameters such as temperature, precipitation,

collaboratively by

humidity, wind speed, and other relevant meteorological variables,
formatted to conform with the model’s specifications. The outputs
generated by the model include phenological development, leaf area
index, and yield, among other results.

In the WOFOST model, the growth and developmental rate of
crops can be accurately simulated, as represented by Equation (1).
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where, the growth rate D,, (in d') of the crop at time ¢ is closely
related to the effective accumulated temperature required for its
growth. For different growth stages j (where j=1 represents
germination and flowering, and j=2 represents the period from
flowering to maturity), the crop requires a cumulative effective
accumulated temperature TSUM,; (in °C-d) to facilitate its growth,
which is essential for completing a specific developmental stage. T
is the effective accumulated temperature threshold for crop
growth, °C.

0, T.<T,
To={T,-T,, T, <T; <Tpu. (2)
Toax =Ty Ti 2 Thasee

where, T; denotes the average daily temperature, °C; T, represents
the lower temperature threshold for crop growth and development,
°C; Taxe signifies the upper temperature threshold for crop growth
and development, °C.

T

DVS = faX WMJ 3)
where, the crop development stage (DVS) is numerically
represented, with DVS=0 indicating the germination stage, DVS=1
representing the flowering stage, and DVS=2 signifying the
maturity stage. The DVS is calculated as the ratio of the actual
accumulated effective temperature for the current growth stage to
the theoretical effective temperature required for that stage,
multiplied by the photoperiodic influence factor f4, This
calculation yields a quantitative indicator of the crop’s current
developmental phase.

D -
Jrea = Do

D¢
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where, D represents the daily effective duration of radiation, h; D,
denotes the effective duration of solar radiation, h; D signifies the
critical effective duration of solar radiation, h.

The daily total assimilation in the WOFOST model refers to the
total energy absorbed and utilized by the crop through
photosynthesis within a single day. This value is obtained by
accumulating and integrating the instantaneous CO, assimilation
rates throughout the day. This value is one of the key input
parameters for the WOFOST model to calculate critical ecological
processes such as crop growth, development, and yield. The daily
total assimilation is typically expressed in the form of total effective
radiation for photosynthesis, with units of kJ/m*> (or MJ/m?). The
WOFOST model simulates the temporal changes in crop growth,
development, and yield by calculating the daily total assimilation
and predicts and manages crops under different ecological
environments.

In the WOFOST model, the response function of single-leaf
CO, assimilation rate to light is represented in a negative
exponential form as Equation (5):

-g9PAR,
A =an(1-¢700) 5)

where, 4, represents the instantaneous total assimilation rate of CO,
per unit leaf area at a relative height L from the canopy top (with
L=0 at the canopy top), expressed in kg CO,/(h-hm? leaf); 4,, is the
instantaneous total assimilation rate of CO, at light saturation, also
in kg CO,/(h-hm’ leaf); PAR, is the available photosynthetically

active radiation, umol/m®s; and &, is the initial light use efficiency,
kg CO,-J.

The calculation proceeds in two stages. First, the instantaneous
total assimilation rate of CO, was calculated, followed by the
calculation of the daily total assimilation rate of CO,. When
calculating the instantaneous total assimilation rate of CO,, the
entire canopy was divided into three layers. LAI at the canopy
height L was calculated using Equation (6); p is an adjustment
factor, which takes values of —1, 0, and 1 for different layers.

LAL = (0.5+pVO.ISLA) p=-1,0,1 (6)

where, LAI; represents the LAI at the relative height L from the
canopy top (in hm*’hm?), distinguishing between shaded leaves and
sunlit leaves to calculate the corresponding total instantaneous CO,
assimilation rates 4y, and 4 respectively.

—&PAR sh
A, =A, <l—e A ) (7)
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where, A, represents the instantaneous total photosynthetic CO,
assimilation rate of shaded leaves, kg/(hm’-h); 4 represents the
instantaneous total photosynthetic CO, assimilation rate of sunlit
leaves, kg/(hm?-h); A,, is the instantaneous total photosynthetic CO,
assimilation rate at light saturation, kg/(hm’-h); ¢ is the light use
efficiency, kg-J; PAR,y, is the total photosynthetically active
radiation absorbed by shaded leaves, J/(m’-s); and PAR 4 is the
total photosynthetically active radiation absorbed by sunlit leaves,
J/(m?-s). The proportion of shaded and sunlit leaves in the LAI is
distinguished to calculate the proportion of leaf area occupied by
sunlit leaves, and f;;; and K is the extinction coefficient (as shown in
Equation (9)).

fu= ek (9)

The instantaneous total photosynthetic CO, assimilation rate of
the entire layer at a relative height L from the canopy top, A7, [in
kg/(hm?- h)], was calculated as follows:

Az = faAg+ (1= f)) Ay (10)
The total instantaneous photosynthetic CO, assimilation rate of
the canopy, A4, [in kg/(hm?-h)], was obtained by weighting and
calculating as follows:
4 LAl (Arpt +1.6A7p0+Arp1)
o 3.6

(11)

At three diurnal points, the instantaneous total photosynthetic
CO, assimilation rates at various canopy locations are converted
into a daily total CO, assimilation rate through weighting. In
Equation (12), 7} denotes the calculation time point (in h), while
Equation (13) defines 4, as the daily total CO, assimilation rate [in
kg/(hm*-h)], which is derived by averaging the weighted values at
three heights and three intervals.

T,,:12+0.5D(O.5+p\/0.15> p=-1,0,1 (12)

D (A +1.6A,+A.,)
3.6 ()

Regarding soil water balance, the WOFOST model employed a
simplified framework, known as the “bucket model” to simulate

A=

crop water balance under stress conditions. This framework
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delineates the soil into three distinct layers: the root zone, which
extends from the soil surface to the depth of the root system; the
subsoil zone, located between the root system’s depth and the soil’s
maximum depth; and the deepest soil layer, situated beneath the
maximum extent of the root system. In the WOFOST model, the
soil moisture available to crops, specifically the water in the root
zone, is determined by multiplying the root depth by the prevailing
soil water content. Upon precipitation, an initial portion is allocated
to surface runoff, proportional to the volume of rainfall. If the soil’s
water content exceeds field capacity, the excess water percolates
downward to the subsoil and deeper layers. In subsequent model
simulations, crops are considered unable to access water that has
percolated to the deeper soil layers. The WOFOST model calculates
crop water uptake potential based on actual root depth and soil
moisture levels, rather than the distribution of soil water within the
root zone. The model assumes that soil water distribution within the
root zone is uniform throughout the day, with the crop’s water
uptake capacity being independent of root distribution and the daily
water uptake rate per unit length. In instances of water limitation,
WOFOST utilizes the Penman-Monteith equation to estimate
potential ET,,. The water stress factor is derived from the ratio of the
crop’s actual water uptake to its potential evapotranspiration.
However, this simplified approach may not adequately simulate the
hydrological cycle throughout the crop’s developmental stages.
242 Overview of HYDRUS model

The HYDRUS model"?, developed by Simunek and colleagues
in the early 1990s, is primarily designed to simulate the movement
of water in the soil and the transport of other substances within it.
Based on a set of mathematical equations and computational
techniques, the HYDRUS model discretizes and numerically
approximates the complex geometric soil medium into uniform or
heterogeneous blocks, equating them to multiple physical quantities.
Parameters and data required for the model include soil material
properties, initial conditions, boundary conditions, and more.

The core equation of the HYDRUS model is the Richards
equation, which describes the one-dimensional variation of water in
the soil, including the movement and transformation of moisture!"..
To more accurately simulate the transport of water and substances,
the HYDRUS model also incorporates additional equations such as
the mass conservation equation and biological reaction equations.
The HYDRUS model can simulate the anisotropic movement of
fluids and various nonlinear reactions and is suitable for predicting
environmental hydrological issues at both small and large scales. Its
advantages lie in its high degree of precision and flexibility. The
model is capable of simulating the movement of water and other
substances in the soil and providing quantitative predictions of
substance transport. Furthermore, the HYDRUS model takes into
account the physical and chemical properties of the soil medium,
more closely resembling the natural environment, and can offer
useful recommendations for land use and management.

In the process of simulating soil water levels, considering that
moisture primarily undergoes one-dimensional vertical migration,
the model employs the Richards equation to calculate the dynamic
changes in soil moisture within the vertical soil profile!. The
Richards equation integrates soil permeability and porosity to
accurately simulate the movement of water in the soil. Through this
equation, the fluctuations in soil water levels can be more precisely
predicted, providing scientific guidance for crop management and
irrigation. The calculation method is shown in Equation (14).

%:%{k(k)(%+lﬂ—5 (14)

In the Richards equation, key parameters include the soil’s
volumetric water content 8 (cm’/cm?), time ¢ (d), coordinate value x
(cm) (positive upwards), pressure head /4 (cm), as well as the crop
root water uptake rate S (cm*/(cm’-d)) (which is 0 for bare areas),
and the soil water unsaturated hydraulic conductivity K(4) (cm/d).
These parameters together form an accurate framework for
simulating soil moisture movement.

The HYDRUS model utilizes a water stress index to investigate
root water uptake, employing the Feddes model to calculate the root
water uptake issue as follows:

Shy=ah)S,=aM)b(x)T, (15)

where, a(h) is the water stress response coefficient; S, is the
potential water uptake rate, cm/d; b(x) is the root water uptake
distribution density function; 7), is the potential transpiration rate,
cm/d.

2.4.3 Coupling analysis of WOFOST and HYDRUS

The WOFOST model, from an ecological perspective,
meticulously describes the interactions and dependencies between
crops and the environment during their growth process. The model
aims to simulate crop growth and development under various
environmental conditions. However, in dealing with the water cycle,
it employs a simplified “bucket model” to simulate the dynamics of
soil moisture and does not consider lateral flow in the horizontal
direction. This simplification limits the model’s ability to simulate
key hydrological processes such as soil moisture changes,
evaporation, and transpiration, which are crucial for crop growth.
The hydrological cycle is the foundation of physical and
physiological processes between soil, crops, and the atmosphere;
therefore, accurately simulating these hydrological variables is of
great significance for understanding how environmental changes
impact crop growth, especially in arid regions. To enhance the
model’s accuracy in simulating crop transpiration under water stress
and its effects on growth and yield, it is necessary to improve the
hydrological cycle calculation process of the WOFOST model.

As one of the core projects of the International Geosphere-
Biosphere Programme, the study of Biospheric Aspects of the
Hydrological Cycle emphasizes the importance of considering the
impact of the biosphere in the hydrological cycle. The HYDRUS-
1D model, on the other hand, adopts a traditional hydrological
perspective, focusing primarily on hydrological processes with less
attention to the biophysics and biochemistry of vegetation. In this
model, growth parameters related to vegetation characteristics, such
as the LA root depth, and crop height, are provided as static data,
implying that these parameters do not dynamically adjust with
changes in the water cycle and water balance. Given the complex
interactions and feedback mechanisms between crop growth and the
hydrological cycle, the static treatment approach of the HYDRUS-
1D model may lead to significant deviations in simulation results
due to the lack of dynamic feedback. Therefore, when simulating
the interaction between crop growth and the hydrological cycle, it is
necessary to dynamically describe the interaction between crops and
hydrological processes to more realistically reflect actual
conditions, thereby more accurately predicting the impact of
environmental changes on crop growth.

Therefore, it is necessary to couple the two models to
complement each other’s strengths, allowing the crop growth model
to provide dynamically changing vegetation characteristics such as
the LAIL root depth, and crop height for the hydrological cycle
processes; and allowing the hydrological model to provide dynamic
changes in soil moisture and other hydrological cycle variables for
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the simulation of the crop growth process, enhancing the analytical
and understanding capabilities of the crop growth-hydrological
cycle dynamics.

The specific operation involves the WOFOST module for
simulating the crop growth process, while the HY DRUS-1D module
is used to simulate soil moisture changes and the water balance
process in the crop root zone. The WOFOST module and the
HYDRUS-1D module achieve data flow coupling by exchanging
crop growth parameters and water stress response factors. The
WOFOST module passes crop growth parameters required for
simulating soil moisture changes and the water balance process to
the HYDRUS-1D module (using the ET,; and LAI simulated by the
WOFOST model throughout the entire growth period as
intermediate variables input into the HYDRUS model). The
HYDRUS-1D module passes water stress response factors that
determine the actual CO, assimilation rate to the WOFOST module,
thereby achieving coupling between the two.

Regarding the potential evapotranspiration of crops, both
models employ the Penman-Monteith method for calculation, hence
using ET, as one of the intermediate variables to input WOFOST
results into the HYDRUS model. The P-M model, established based
on aerodynamics and the principles of energy balance, takes into
account all influencing factors comprehensively. Compared to other
calculation methods, the P-M model does not require parameter
adjustments according to climatic differences across regions when
calculating ET,. It has been tested with global meteorological
station data, and its calculated ET, accuracy is universally
applicable, thereby better guiding crop irrigation and water
management. The equation is as follows:

900
0408ARR,-G)+T (m

A+7(1+0.34u,)

) u, (e, —e,)
ET, =

(16)

where, ET, represents the daily reference evapotranspiration, mm/d;
R, is the net radiation at the crop surface, MJ/(m*-d); G is the soil
heat flux density, MJ/(m’-d); T is the daily average air temperature
at 2 m height, °C; u, is the daily average wind speed at 2 m height,
m/s; e, is the saturation vapor pressure, kPa; e, is the actual vapor
pressure, kPa; 4 is the slope of the saturation vapor pressure curve
with respect to temperature, kPa/°C; y is the psychrometric constant,
kPa/°C.

The calculation formulas for potential transpiration and soil
evaporation are as follows:

T,=ET, (1-e*™) (17)

E,=ET,e** =ET,-T, (18)

where, k represents the canopy extinction coefficient, and LAI
stands for the leaf area index.
2.5 Sensitivity analysis and parameter calibration of the model
2.5.1 Redefine model parameters

Expanding on the WOFOST model framework, this study
meticulously adjusted parameters to accurately simulate apple tree
growth. Given that apple trees are perennial, their growth traits
markedly differ from annuals, necessitating parameter adaptations
to accommodate their distinct physiological attributes. To begin, an
exhaustive analysis of the WOFOST model’s internal structural
parameters was performed, followed by calibration aligned with the
growth patterns and physiological traits of apple trees”. Notably,
for the pivotal parameter set defining phenological stages, the
developmental phases of apple trees were redefined. The DVS
quantifies the developmental status of apple trees, with its scale

calibrated to map onto discrete growth phases. For example, the
DVS is set at —0.10 for the bud break stage, —0.05 for flowering, 0
for the fruit set, incrementing to 1 as the branches renew, and
peaking at 2 upon fruit maturity. With these refinements, the
WOFOST model more precisely mirrors the growth patterns and
physiological conditions of apple trees during simulation, bolstering
the accuracy and applicability of the predictive outcomes.

2.5.2 Sensitivity analysis

The WOFOST model encompasses a vast array of parameters,
necessitating a global sensitivity analysis to quantitatively evaluate
the influence of individual parameters and their interactions on
output variability. Typically, a subset of model parameters
predominantly dictates the variability in model output, whereas the
remaining parameters exert a negligible influence. To concentrate
calibration efforts on a select few biologically significant sensitive
parameters, ensuring simulation efficacy and concurrently
minimizing computational demands, the Sobol method"" is
leveraged. This approach utilizes uniformly distributed sample
points to assess the impact of input factors on output, incorporating
their interactive effects. It systematically prioritizes and filters input
factors, delineating the relative significance of each parameter and
augmenting the model’s predictive precision.

The Sobol method is a typical global sensitivity analysis
technique!"® and has been proven to be one of the most effective
methods for model parameter sensitivity analysis™”. The Sobol
method is based on the concept of variance decomposition,
representing the parameterized model as:

y=f(X.0 (19)

where, y represents the objective function, X denotes the driving
data, and 6 is the vector of parameters.

The model’s total variance D(y) is decomposed into the effects
of individual parameters and the combined effects of the
parameters.

k k-1 k
DG)=Y D+Y > Dy+..+D (20)
i=1

i=1 j=itl

where, the range of values for i is from 1 to k, where £ is the total
number of input parameters. D; represents the first-order partial
variance of parameter ¢; on the objective function y, D; denotes the
second-order partial variance due to the interaction between
parameters ¢; and ¢,, and k is the dimension of the parameters.

Equation (20) is normalized, and the sensitivity indices of the
parameters are calculated by the ratio of the partial variance to the
total variance.

First-order sensitivity index:

D

Si=5 1)

Total sensitivity index:

Soizzsi (22)

where, S,; denotes the sensitivity including all parameters ;, which
is the sum of the individual effect of parameter 6; on the objective
function y and the combined effect with other parameters on y**”.
2.5.3 Parameter calibration

At the commencement of the crop model, this study, leveraging
actual monitored data, meticulously calibrates the germination base
temperature (TBASEM) to 7°C for enhanced model fidelity. This
calibration ensures alignment of the model’s germination simulation
with the actual environmental conditions. Subsequently, aligning
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with the observed trends in LAI, the leaf lifespan (SPAN) is
adjusted to 50 to emulate the natural lifecycle of leaves, from
emergence to senescence. In light of the stable and enduring nature
of the root systems in perennial fruit trees, this study establishes the
root mortality rate at 0, indicative of the minimal occurrence of root
death under natural growth conditions.

Following the identification of sensitive parameters via
WOFOST model’s sensitivity analysis, this study employs the
PEST parameter estimation software to refine and select parameters
that are challenging to ascertain or susceptible to measurement
inaccuracies. For the remaining parameters, this study harmonizes
actual measurement data with the model’s default parameter
values®, performing judicious estimations and configurations to
ensure an accurate depiction of environmental factors’ influence on
crop growth across the entire simulation process. This initialization
approach, grounded in empirical growth data and scientific
estimation, not only enhances the model’s capacity to accurately
simulate the crop growth process but also augments its predictive
precision and practical utility in agricultural production scenarios.
2.6 Performance evaluation of model simulation accuracy

This study employed the coefficient of determination R* and the
NRMSE as evaluation metrics®*. R*> is a statistical metric that
measures the consistency between the model’s predicted values and
the observed values. NRMSE is another statistical indicator of
model prediction accuracy, which normalizes the root mean square
error (RMSE) by dividing it by the mean or range of the observed
values, thus making the error measure independent of the data’s
scale. An R’ value typically ranging from 0.8 to 0.9 or higher is
considered a good fit. For NRMSE, a value less than 0.1 indicates
that the model’s prediction accuracy is very high and can be
considered an extremely accurate simulation, a value between 0.1
and 0.2 is usually considered high-precision simulation, between 0.2
and 0.5 is considered medium-precision simulation, and greater than
0.5 is considered low-precision simulation. The calculation
formulas for each metric are shown in Equations (23)-(25).

> -5y

R=1-- (23)
> -5y

(24)

NRMSE = (25)

Vi
where, §; represents the simulated values, y; represents the measured

values, y; is the average of the observed values, and n is the
sample size.

3 Results and analysis

3.1 Sensitivity analysis and main parameter calibration of the
model

This study employed the Sobol method to conduct a
comprehensive sensitivity analysis on yield parameters. The Sobol
analysis was configured with a parameter sample size of 15%2000,
aimed at identifying parameters with a substantial impact on yield.

The study primarily utilized the water-limited mode within the
WOFOST model framework and performed the sensitivity analysis
using meteorological data corresponding to the 2022 growth period
of apple trees. The results of this analysis are presented in Figure 1.
The findings reveal that the first-order and global sensitivity
patterns among various crop parameters exhibit notable similarities.
Parameters demonstrating high sensitivity to yield include the
TBASEM, accumulated temperature to the juvenile fruit stage
(TSUMEM), SPAN (leaf area life cycle at 35°C), initial dry weight
of roots and trunk (TDWI), conversion rate of assimilates to storage
organs (CVO), and conversion rate of assimilates to stems (CVS).
Notably, SPAN and TSUMEM exhibit higher sensitivity indices,
indicating that yield is predominantly influenced by the maximum
effective germination temperature and the leaf area life cycle at
35°C.
[ First order sensitivity index
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Figure 1 Sensitivity analysis for the apple tree model

Utilizing the aforementioned calibration techniques, the PEST
parameter estimation software was employed to refine high-
sensitivity data, leading to the selection of the calibrated outcomes.
For the remaining parameters, this study aligned empirical
measurement values with the model’s default parameter ranges to
facilitate informed estimations and configurations. The parameters
specific to apple trees are listed in Table 1.

Table 1 Calibration table of main parameters for the apple
tree model
Parameter Parameter definition Calibration Unit
value
TBASEM Minimum germination temperature 7.0 °C
TEFFMX Maxlmum effective temperature for 30 oC
germination
TSUMEM Agcumqlated temperature from germination 170 oC-d!
to juvenile fruit stage
TSUMI fI\Acgumulat-ed temperature from juvenile 456 oC-d
Tuit to rapid expansion stage
TSUM2 Accum}llated temperature from rapid 1023 oC-dt
expansion to maturation stage
TDWI  Initial dry weight of roots and stems 89 kg-hm?
RGRLAI Daily maximum increase in leaf area index 009  hmhm®d'
(LAT)
LAIEM  Maximum growth rate of LAI 0.02 hm*hm?
SPAN  Life cycle of leaf area at 35°C 50 d
TBASE Low-temperature threshold for leaf age 10 °C
CVL Conversion rate of photosynthates to leaves ~ 0.762 kgkg!
cvo Conversion rate of photosynthates to 0720 kekg'
storage organs
CVR Conversion rate of photosynthates to roots 0.790 kg'kg!
CVS Conversion rate of photosynthates to stems 0.901 kg'kg!

Relative change in respiration rate with a
10°C temperature increase

Q10
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3.2 Model validation and evaluation
3.2.1 LAI verification

The fidelity of the LAI simulation serves as a pivotal metric for
evaluating the accuracy of apple tree growth simulation. Figure 2
shows the outcomes of the LAI simulation across varying degrees
of water deficit, while Figure 3 presents a comparative analysis
between the LAI simulation and empirical data. The findings reveal
a strong concordance between the model’s projections and actual
measurements, with R* values exceeding 0.84. Notably, the LAI
simulation under the LD treatment demonstrates the highest preci-
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sion, achieving an R*> of 0.9525 and an NRMSE of 8.02%, which is
below the 10% threshold. For the MD1 treatment, the corresponding
values are R*=0.9284 and NRMSE=14.57%; for the MD2 treatment,
R*=0.8412 and NRMSE=13.62%; and for the CK treatment, R*=
0.9471 and NRMSE=9.14%. The accuracy of the LAI simulation is
notably lower under the MD2 treatment, with an R* value falling
below 0.9. These outcomes suggest a decrease in model simulation
accuracy with excessive water deficit in apple trees. In conclusion,
the LAI simulation maintains a relatively high level of accuracy
when water deficit treatments exceed 55% of field capacity.
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Note: The water deficit treatments were configured to 85%, 70%, and 55% of the CK treatment volumes, correspondingly labeled as LD, MD1, and MD2. Same below.

Figure 2 LAI simulation diagram for the apple tree model
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Figure 3  Scatter plot for the apple tree model

3.2.2 Soil moisture content verification
Across various water deficit treatments, a comparison of the

measured versus simulated WOFOST-HYDRUS values (shown in
Figure 4) and the soil moisture simulation outcomes (shown in
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Note: Each subplot, in order from left to right and top to bottom, represents the comparison of actual and simulated soil moisture content at depths of 10 cm, 20 cm,
30 cm, 40 cm, 50 cm, and 60 cm. MV denotes the actual soil moisture content, and Analog denotes the simulated value.

Figure 4 Scatter plot comparing measured and simulated soil moisture content values
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Figure 5) demonstrate that the developed WOFOST-HYDRUS
model effectively simulates soil moisture at multiple depths for
apple trees, achieving a model accuracy R* exceeding 0.75 across
diverse water management scenarios. Specifically, under the LD
treatment, the WOFOST-HYDRUS model exhibits marginally
higher simulation accuracy for shallow soil moisture, registering R*
values from 0.8327 to 0.8452 for the 0-30 cm layer, compared to
0.7523 to 0.7963 for the 30-60 cm layer. Under the MD1 treatment,
the model maintains relatively high simulation accuracy for shallow
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soil moisture, with R* values ranging from 0.7706 to 0.8896, while
the accuracy for deeper soil moisture falls within the range of
0.7548 to 0.8149. Similarly, under the MD2 treatment, the model’s
simulation accuracy for shallow soil moisture remains relatively
high, with R* values from 0.8502 to 0.8943; and for deeper soil
moisture, the accuracy is between 0.7720 and 0.8063. The study
suggests that excessive water deficit may diminish simulation
accuracy, potentially due to the model’s failure to account for the
physiological adaptations of apple trees to water stress conditions™®.
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Figure 5 Moisture simulation results for the apple tree model

3.2.3 Production verification

Variations in actual apple tree yields were observed across the
spectrum of water deficit treatments. In the experimental analysis,
the LD treatment produced the highest individual tree yield at 18.1
kg, while the MD2 treatment resulted in the lowest yield at 15.7 kg.
The MDI1 treatment yielded 17.2 kg, and the CK treatment
generated 17.6 kg, establishing the following descending order of
yields: LD, CK, MDI1, MD2. Table 2 lists the discrepancies
between simulated and actual yields across the various water deficit
treatments, all of which fall within a 10% margin. The LD treatment
exhibited a minimal yield error of 6.27%, in contrast to the maximal
error observed under the MD2 treatment at 9.61%. The MD1 and

CK treatments recorded respective errors of 7.36% and 6.85%.
These findings suggest that apple trees exhibit enhanced growth and
yield under moderate water deficit conditions; however, severe

water deficits can adversely impact yield.

Table 2 Yield errors under different water deficit treatments

Deficit irrigation Measured Simulated Yield error
MD2 15.7 17.4 9.61%
MD1 17.2 18.6 7.36%

LD 18.1 193 6.27%
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4 Discussion

4.1 Analysis of model simulation accuracy

Validation against empirical data confirms that the LAI
simulation achieves a high degree of precision (R*>>0.88), while the
yield simulation accuracy is also commendable, exhibiting errors
within a 10% margin. Furthermore, the simulation of soil moisture
content yields positive outcomes. The accuracy of the simulations
surpasses that of the MD2 treatment for CK, LD, and MDI1
treatments. Initially, simulated accuracy increases with reduced
irrigation volumes but subsequently declines. An exceedingly low
irrigation volume may diminish simulation accuracy, potentially
due to the enhanced water use efficiency of apple trees under
specific moisture conditions. Moderate water deficiency, as
observed in the LD treatment, can enhance water utilization
efficiency in apple trees, thereby moderately increasing yield. In
contrast, severe water scarcity, characteristic of the MD2 treatment,
induces more pronounced drought stress™. Under the MD2
treatment, soil moisture may decrease to very low levels, potentially
complicating the dynamics of soil moisture. Alternatively, the
model may not have employed the most appropriate parameter set
for extreme drought conditions, resulting in discrepancies between
the simulation results and actual conditions. Furthermore, under
extreme drought conditions, measuring soil moisture may become
more difficult as the soil hardens, which can lead to increased
measurement errors. These errors may propagate into the model,
thereby affecting the accuracy of the simulation results. In some
instances, the CK treatment may lead to excessive soil moisture,
which can impair soil aeration and root respiration, ultimately
detracting from crop growth. The LD treatment is likely more
effective in maintaining optimal soil moisture conditions. In
practical agricultural settings, its impact on apple tree growth may
exceed the corrections for simulated drought stress, potentially
exacerbating errors in LAI and yield estimations™. LAI, a critical
input for HYDRUS, can propagate errors into soil moisture content
simulations, if it is inaccurate, with these errors becoming more
pronounced as soil depth increases. This variability may be
attributed to significant differences in the physical and chemical
properties of the soil, including texture, organic matter content, and
porosity, across varying depths. Such heterogeneity complicates the
simulation of deep soil moisture, thereby increasing the potential for
error®,
4.2 Uncertainty in model input parameters and considerations
for model improvement

The WOFOST-HYDRUS model requires comprehensive
datasets that include meteorological, soil, and crop data®".
Meteorological data, including precipitation, temperature, humidity,
and radiation, are critical input parameters for the model.
Measurement errors, spatial representativeness, and temporal
resolution of these data can significantly impact the simulation
results. For instance, the accuracy of precipitation measurements
may be influenced by the precision and location of rain gauges,
while temperature and humidity readings can be affected by sensor
calibration and environmental conditions. The physical and
chemical properties of soil, including texture, organic matter
content, and porosity, are essential for water retention and transport.
Measurement errors and spatial variability in these parameters can
introduce uncertainties in simulation outcomes. For example,
variations in soil texture can influence water infiltration and
retention, while changes in organic matter content can influence soil

water-holding capacity and nutrient supply. Additionally,
physiological parameters of crops, such as LAI, root distribution,
and stomatal conductance, are vital for accurately simulating the
crop’s response to water deficits. Measurement errors and biological
variability in these parameters can introduce uncertainties in
simulation results. For instance, inaccuracies in LAI measurements
can influence the simulation of photosynthesis and transpiration,
while uncertainties in root distribution can alter water uptake
simulations. The accessibility of these datasets is often limited, and
updates may not be timely, which impacts the model’s practical
utility. Furthermore, deep soil moisture is influenced by various
factors, including capillary action, gravitational drainage, and
infiltration. These processes become increasingly complex with soil
depth, thereby amplifying the uncertainty of simulations. The
accuracy of the HYDRUS simulation relies on precise input
parameters, such as soil hydraulic properties and boundary
conditions®™. Accurately obtaining these parameters for deep soil
layers is challenging, further contributing to simulation uncertainty.
This parameter uncertainty, combined with the model’s inherent
simplifications, may affect the
outcomes”*’.

consequently simulation

This study validated the soil moisture component of the
WOFOST-HYDRUS model using actual measurement results;
however, further exploration is necessary to confirm the model’s
broader applicability. The model can be evaluated using long-term
datasets from various climatic regions and soil types to assess its
stability and suitability. Dynamically adjusting model parameters in
accordance with the progression of the crop growth season can
effectively reflect changes in crop growth status and environmental
conditions. To enhance the accuracy of parameter acquisition,
advanced sensors and measurement technologies should be
employed to minimize measurement errors in meteorological, soil,
and crop physiological parameters. Integrating ground observations,
remote sensing data, and model simulations can significantly
improve the spatial and temporal resolution of these parameters.
Future research studies will incrementally verify and analyze the
model’s application in simulating growth parameters and yield of
apples, calibrating model parameters with empirical data related to
the growth and development of apple trees to enhance the model’s
simulation accuracy.

The current iteration of the WOFOST-HYDRUS coupled
model accounts solely for water movement and does not incorporate
solute transport dynamics. Future research endeavors could
integrate solute transport processes within the soil into the
WOFOST-HYDRUS model to elucidate the effects of fertilization
on soil and crops. By incorporating solute transport, the model
would more accurately delineate the complex transformations and
transport of nutrient elements within the soil, thereby enhancing
predictions of crop-soil interactions.

5 Conclusions

In this investigation, the ET, and LAI were utilized as
intermediary variables to enhance a WOFOST-HYDRUS model
specifically designed for apple trees, through the integration and
refinement of both the WOFOST and HYDRUS-1D models. New
phenological parameters for apple tree crop development were
established by redefining growth stages, followed by a sensitivity
analysis that examined the interaction between state variables and
phenological parameters. The subsequent recalibration of these
parameters ensured that the outcomes closely reflected the actual
growth conditions of apple trees. The model was employed to
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simulate the leaf area index, yield, and soil moisture content of
apple trees across various water deficit treatments. The LD
treatment yielded the highest values for both the leaf area index and
yield, in contrast to the MD2 treatment, which produced the lowest.
The simulation demonstrated high precision for the LAI (with R’
ranging from 0.8857 to 0.9525 and NRMSE from 8.02% to 14.57%)
and for yield (with errors ranging from 6.27% to 9.61%). The
WOFOST-HYDRUS model exhibited slightly greater simulation
accuracy for shallow soil moisture (R*=0.8327-0.8452 in the 0-30
cm layer) compared to the deeper layer (R*=0.7523-0.7963 in the 30-
60 cm layer), across diverse water deficit treatments. In summary,
the WOFOST-HYDRUS model provides a novel approach for
simulating apple tree growth under varying water deficit conditions
and for assessing soil moisture dynamics.
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