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Classification of wild mushrooms based on improved ShuffleNetV2
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Abstract: This study introduced an improved CHE_ShuffleNetV2 model based on ShuffleNetV2 to address the classification
challenge of wild mushrooms in a complex environment. The model incorporated a Cross Stage Partial (CSP) structure to
simplify its complexity. Furthermore, it adopted Hybrid Dilated Convolution (HDC) to replace conventional convolution,
enhancing the model’s recognition accuracy by expanding its receptive field. In addition, the ECA module was integrated to
enhance the focus of the model on crucial feature information. The Hardswish activation function was employed instead of the
ReLU activation function to reduce the number of parameters. The experimental results demonstrated that the enhanced model
achieved improved accuracy, precision, recall, and F1-Score of 95.02%, 95.19%, 94.56%, and 94.00%, respectively,
representing improvements of 2.81%, 3.82%, 3.08%, and 3.65%, correspondingly, over the original model. The enhanced
model also reduced the parameters and FLOPs to 0.933 M and 104.08 M, respectively, representing reductions of 26.13% and
30.42% over the original model. Compared with commonly used lightweight models such as EfficientNet, DenseNet, and
MobileNetV2, the CHE ShuffleNetV2 model showed superior performance in solving the wild mushroom classification
problem in complex environments, exhibiting its suitability for deployment on resource-constrained devices including mobile
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1 Introduction

China has been reported to possess abundant fungal resources,
with 1662 known species of wild mushrooms. Notably, 1020 are
edible, 692 are medicinal, and 480 are poisonous'?.. Due to the
complex growth environments of wild mushrooms and a lack of
knowledge regarding mushroom identification, poisoning incidents
frequently happen*’l. Therefore, the accurate and rapid
identification of wild mushrooms has become an urgent and
crucial duty.

Advances in artificial intelligence and computer technology
have enabled effective crop identification and disease diagnosis
through computer vision''’. Deep learning trained on large-scale
data has produced high-accuracy image recognition models that
surpass traditional methods""?. Wang et al.'¥ developed a
recognition model using support vector machines, random forests
(RF), and convolutional neural networks (CNNs), trained on 350
images, with the RF model achieving the highest accuracy. Lin et
al." researched the identification of wild mushrooms using
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machine vision and image processing techniques, achieving a
90.78% accuracy rate with the proposed method by the Retinex
algorithm for image enhancement. Although machine learning-
based research models are less complex, their accuracy is lower!*,
whereas the models based on convolutional neural networks excel
in image recognition tasks. Convolutional neural networks excel at
extracting and learning data features, simplifying tasks while
providing high accuracy, and automating feature extraction in image
recognition”, For example, Ketwongsa et al.?! proposed the
poisonous mushroom classification using an enhanced AlexNet
model with the initial module of GoogLeNet, achieving an accuracy
of 95.5%. Peng et al.”” introduced a Multi-Dimensional Feature
Fusion Attention Network, M-ViT, incorporating the MDA module,
with M-ViT achieving 96.21% accuracy on mushroom datasets and
91.83% on the MO106 dataset. Despite the accuracy improvements
offered by deep learning-based recognition models, they also
escalate model complexity and hardware costs.

Extensive research has been conducted on lightweight models.
Xiao et al.”! trained a ShuffleNetV2 model using 1675 mushroom
images, achieving a Top-1 accuracy of 55.18% and a Top-5
accuracy of 93.55%. The relatively small size of the dataset
contributes to the low Top-1 accuracy. Wan et al.?* proposed a
novel lightweight CNN model featuring a multi-feature partitioning
design to reduce model complexity. This model achieved a 94.6%
accuracy on the CIFAR-100 dataset, while reducing the number of
parameters. Zhu et al.” introduced MobileNetV3_large for shiitake
mushroom grading classification, enhancing the SE attention
module, using PolyFocalLoss, and employing transfer learning. The
improved model achieved 99.91% accuracy with a 26.54%
in model size.

reduction Maintaining high accuracy while
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lightweighting the model reduces computational and hardware
costs, facilitating deployment on mobile devices. Research in wild
mushroom classification and recognition primarily focuses on
improving model accuracy by deepening the network structure*,
However, this approach, while effective in improving accuracy,
overlooks the model’s lightweight design, resulting in
computational overhead and deployment challenges in practical
applications. Hence, investigating the highly accurate and
lightweight wild mushroom classification model is crucial for its
application and deployment. This study proposed an enhanced
CHE_ShuffleNetV2 model that reduced the model parameters and
computation complexity while maintaining classification accuracy.
The study presented here aimed to achieve the following specific
objectives: 1) the CSP structure was introduced, employing a cross-
stage local connection method to fully utilize the extracted feature
information, effectively reducing the number of model parameters
and computational complexity; 2) the ordinary convolution in the
base unit was replaced with dilated convolution to expand the

f. Enmloma g. Hygrocybe

Figure 1

2.2 Data preprocessing and partitioning

The scale of a dataset can affect the recognition performance of
the model. Data augmentation operations such as increasing/
decreasing brightness, adding Gaussian noise, horizontal flipping,

f. Translation

e. Horizontal flip

h. Lactarius

. Decreased brightness

receptive field and enhance the feature extraction capability of the
model. A mixed dilated convolution strategy was employed to
mitigate the loss of partial detail information; 3) the ECA channel
attention mechanism was added to effectively extract feature
information from important regions in the image, thereby enhancing
the model’s recognition capability; 4) the ReLU activation function
was replaced with the Hardswish activation function to reduce the
computational load.

2 Materials and methods

2.1 Data acquisition

The dataset used in this study comprised two parts. The first
part consisted of a mushroom dataset published on Kaggle, and the
second part comprised the images of wild mushrooms captured in
Fusong, Tonghua, Jilin, and other locations, all featuring complex
backgrounds. The dataset comprised 7017 images of ten species of
wild mushrooms, including Agaricus. The samples of these wild
mushrooms are shown in Figure 1.

N
i. Russula J. Suillus

Images of some wild mushroom samples

rotating, translating, and enhancing contrast can mitigate overfitting
and enhance the generalization ability of the model™*\. This study
employed these operations to enhance the dataset. The
augmentation results are shown in Figure 2.

d. Gaussian noise

h. Contrast enhancement

g. Rotation

Figure 2 Images of data augmentation effects

After the data augmentation, the dataset contained 11 007
images. The dataset was divided into training, validation, and test
sets at an 8:1:1 ratio. The information for each category of wild
mushrooms is presented in Table 1.

2.3 Improved ShuffleNetV2 wild mushroom classification
model

ShuffleNetV2, a lightweight network model introduced by
Zhang et al.®", is based on ShuffleNetV1. The network structure is
shown in Figure 3.

The ShuffleNetV2 network comprises base and down sampling

units, as shown in Figure 4. Figure 4a illustrates the base unit that
partitions the input feature map into channels. The left branch
performs identity mapping, and the right branch performs feature
extraction using convolutional layers. Subsequently, the two
branches are concatenated via Concat and undergo a Channel
Shuffle. Importantly, the base unit maintains the feature-map
dimensions and channel count.

Figure 4b depicts the down sampling unit, where both branches
employ deep convolution with a stride of two for dimensionality
reduction. The two branches are then concatenated via Concat and
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subjected to a Channel Shuffle. This unit reduces the feature map
size by half, while doubling the number of channels.

Table 1 Number of different types of wild mushrooms

Before augmentation After augmentation

Category (Number of images) (Number of images)
Agaricus 347 1103
Amanita 741 1100
Boletus 1071 1071
Cantharellus 800 1060
Cortinarius 830 1114
Entoloma 362 1092
Hygrocybe 314 1107
Lactarius 1104 1104
Russula 1147 1147
Suillus 301 1109
Total 7017 11007
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Figure 4 Constituent units of ShuffleNetV2

ShuffleNetV2
computational complexity and performance. By optimizing channel

strikes an effective balance between
shuffle and depthwise convolutions, it significantly reduces
computational overhead, which is critical for the wild mushroom
classification task in this study.
2.3.1 CHE_ShuffleNetV2

ShuffleNetV2 has shown strong performance in various
applications®*. Current research on wild mushroom classification
mainly aims to improve accuracy by deepening network models.
However, stacking convolutional modules increases model
parameters and computational cost. To enhance classification
accuracy and ensure efficient deployment on mobile devices, this
study introduced an enhanced CHE ShuffleNetV2 model based on
ShuffleNetV2, integrating CSP, HDC, the ECA module, and the
Hardswish activation function. The model expands the receptive
field, enhances feature selection, and improves classification
performance in complex environments.

The CSP structure was integrated into the stage module (CSP-
stage module), leveraging cross-stage local connections to enrich
the gradient information, reduce gradient reuse, and reduce the

computational load. By partitioning channels and sharing local

information, the model provides richer gradient information across
different stages, enabling efficient learning of complex wild
mushroom features. The three CSP stages consisted of down
sampling units and base-HDC units, with the number of these units
in the three module layers set at 1:3, 1:7, and 1:3, respectively. The
Deepwise convolution in the base unit was substituted with
Deepwise Dilated convolution to form the base-HDC unit. The Base-
HDC unit employs a Hybrid Dilated Convolution structure, which
eliminates the grid effect seen in conventional dilated convolutions,
resulting in a more uniform receptive field expansion and improving
the model’s ability to recognize image details. The ECA module
was added after the CSP-stage layer to adaptively weight channel
features, enabling the model to focus on key features for
distinguishing different wild mushroom species. Additionally, the
Hardswish activation function replaced the ReLU activation
function to enhance the model performance. The overall structure of
the CHE_ShuffleNetV2 model is illustrated in Figure 5.

2.3.2  Cross-stage partial

CSPB optimizes

computational complexity in neural networks. The principle
involves dividing the input feature map’s channel dimensions into

gradient propagation and reduces
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two equal parts. One part is passed directly to the next
convolutional layer, while the other undergoes convolution before
merging with the first. This parallel processing and feature
reorganization reduce redundant computations. By processing only
a subset of channels with convolution and weighting after division,
the CSP structure reduces parameters and computational load,
optimizing efficiency while maintaining accuracy. CSP employs
skip connections to fuse features from different layers, optimizing
gradient flow balance and enhancing model stability in deep
networks. This design reduces parameters and enhances the model’s
learning effectiveness.

Convl MaxPool ~CSP-stage2 ECA  CSP-stage3
S B o B 4
Input 3x3Conv S o : < :
; Stride=2 Down sampling Down sampling
224x224x3 (Hardswish) 56x56x24 unitx1 unitx1
112x112x24 Base-HDC unitx3 Base-HDC unitx7
28x28x116 14x14x232

l
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Output«— <—_/— <—_'<— /—'

1x1x1024 1x1Conv Down sampling unitx1
(Hardswish) Base-HDC unitx3
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Note: The gray part represents the convolution module with Hardswish, the pink
part represents the CSP-stage module with the CSP structure, the blue part
represents the ECA module, and the base-HDC unit represents the base unit with
HDC.

Figure 5 Structure of CHE ShuffleNetV2

In this study, a 1x1 convolution block is incorporated into the
left branch of the CSP structure to facilitate cross-channel
information interaction, enhancing the model’s ability to capture
inter-channel dependencies. This design allows the model to acquire
rich information from the input feature map at a lower
computational cost. The right branch employs the Base-HDC unit to
further extract features from the input feature map. After feature
extraction in both branches, the outputs are concatenated through
cross-stage partial connections, generating a more diverse set of
feature combinations. The output is further optimized through
channel shuffling, enhancing channel information integration and
improving the model’s expressiveness. The enhanced CSP-stage
structure is illustrated in Figure 6.

2.3.3 Hybrid Dilated Convolution

The dilated convolution™ extends the feature extraction range
of the model by enlarging the receptive field of the convolution
kernel while maintaining its size. Compared to the traditional
convolution, the dilated convolution adjusts the receptive field size
using the dilation rate, as shown in Equation (1).

K=k+(k-Dx(r—1) (1)

where, k represents the size of the original convolution kernel, r
represents the dilation rate, and k represents the size of the
receptive field. Figure 7 compares ordinary convolution with dilated
convolution, where the dark blue area indicates the receptive field.
In Figure 7a, the receptive field size of an ordinary convolution map
is 3x3, whereas in Figure 7b, the receptive field size of a dilated
convolution map is 5x5.

An excessively large receptive field can yield sparse feature
information, leading to insufficiently extracted features in the

shallow layers™. Stacking convolutional layers with the same
dilation rate can induce a grid effect, leading to a loss of local key
information, as shown in Figure 8. The use of three consecutive
dilated convolutions with the same dilation rate may not extract all
the pixels, resulting in the loss of partial detail information.

Down sampling
unit

|

Channel split

-

Base-HDC unit

|

1x1Conv Base-HDC unit xN (N=3,7,3)

Base-HDC unit

Concat

|

Channel shuffle

Note: The left branch is added to form a CSP structure with the right branch, and
the base-HDC unit is the convolution unit with HDC added.
Figure 6  Structure of the CSP-stage module

b. 3x3 dilated convolution
with a dilation rate of 2

a. 3x3 ordinary convolution

Figure 7 Ordinary convolution and dilated convolution

The HDC employs multiple dilated convolutions with varying
dilation rates to extract comprehensive feature information®”. In this
approach, each sample has a different dilation rate r, with the values
of 1, 2, and 3, as illustrated in Figure 9a. The sampling results, as
shown in Figure 9b, ensured the extraction of all pixels within the
receptive field to address the issue of information loss. The dilation
rate must satisfy Equation (2).

MizmaX[M[.H_2r[72r1_Ml+l7ri] (2)

where, M, represents the maximum distance between two non-zero
elements in layer 7, and r; is the dilation rate of the i-th layer.

Replacing the Depthwise convolution in the right branch of the
base unit with an HDC enlarges the receptive field and improves the
feature extraction capability, as depicted in Figure 10.
2.3.4 ECA mechanism

The ECA mechanism is a lightweight channel attention method
that boosts channel expressiveness without adding significant
parameters or computations. The fundamental principle of ECA is
capturing channel correlations through local interactions, enabling
the model to focus on key features.

The ECA mechanism compresses the spatial features of the
input feature map (CxHxW) into a global feature value via global
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ﬁ Dilated convolution (3x3, r=2)
ﬁ Dilated convolution (3x3, r=2)
ﬁ Dilated convolution (3x3, r=2)

a. [llustration of the sampling process for a dilated
convolution with a dilation rate of =2 three times
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b. Dilated convolution sampling result, where the number represents
the number of times the pixel at that point has been extracted

Figure 8 Dilated convolution and its sampling diagram
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Figure 9 HDC and its sampling diagram

average pooling, producing a 1x1xC vector that represents each
channel’s global information. ECA applies one-dimensional
convolution to the channel dimension, with the kernel size k&
adaptively determined by the channel coefficient C, and
proportional to C. This one-dimensional convolution captures
channel dependencies and efficiently extracts key features. After the
convolution, a weight vector is generated and element-wise
multiplied with the original feature map to highlight the model’s
focus on important image features™*. The structure of the ECA
module is shown in Figure 11.
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of 1 and 2 indicating the use of dilated convolutions with dilation rates of 1 and 2,
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Note: GAP is Global Average Pooling, o is Sigmoid activation function, and ® is
element-wise product.

Figure 11  Structure of the ECA module

2.3.5 Hardswish activation function

The ShuffleNetV2 model employs the ReLU activation
function, as shown in Figure 12a and Equation (3). Despite its
simplicity, ReLU faces an issue known as neuronal death. The
Swish activation function, shown in Figure 12band with
Equations (4) and (5), offers a smooth and continuous alternative. It
overcomes neuronal death by introducing a sigmoid function, albeit
at the cost of increased computational complexity.

x, x>0

ReLU(x) = max(0, x) (3)
0, x<0

Sigmoid(x) = o(x) = T 4)
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Swish(x) = x-o(x) %)

The Hardswish activation function builds upon enhancement of
the Swish activation function. It not only addresses the issue of
neuron death, but also employs a piecewise linear function to
eliminate the exponential operation found in the Swish function,

(7) specifying the calculation.

ReLLU6(x) = min(max(x,0),6) (6)
0, x<-3
ReLU6(x+3) _ ) x x>+3

Hardswish(x) = x

(M

resulting in faster computation. Figure 12c¢ illustrates the function 6 (x+3) otherwise
. . .. . . . X s
image of the Hardswish activation function, with Equations (6) and
10 10 10
8t 8 8r
z
= 6t = 6f < 6f
3 Z £
2 4+ UB) 4r -E 4r
2r 27 = 27
/\Q.Q /(\5 o /qﬁ NI \@ /\Q.Q /(\‘.3 P /qf? RN IPASIPA) & /\Q.Q /(\‘.3 P /qj.j RN EPASIPA) \Q.Q
X P X
a. ReLU b. Swish c. Hardswish

Note: The horizontal axis represents input feature maps, and the vertical axis represents output feature maps of the activation function.

Figure 12

2.4 Experimental environment and settings

The network model used in this experiment was trained using
the PyTorch deep-learning framework. The experimental hardware
comprised an Intel(R) Xeon(R) Gold 6246R@3.40GHz CPU with
32 cores and 128GB of memory, and an NVIDIA Quadro RTX
8000 GPU with 48GB of video memory. All experiments were
conducted using the Windows 10 operating system running Python
version 3.8.

To enhance the convergence rate of the model and reduce the
training time, the experiment utilized the pre-trained ShuffleNetV2
1x model. Details of the hyperparameter settings are listed in Table 2.

Table 2 Hyperparameter settings

Parameters Value
Batch size 32
Image size 224x224
Learning rate 0.001
Epoch 200
Optimizer Adam

Loss function Cross Entropy

2.5 Evaluation indices
In this study, Accuracy, Precision, Recall, and F1-Score were
selected as the evaluation indices of model performance.

TP+ TN
Aceuracy = 45T FP § FN ®)
.. TP
Precision = TP+ TP ©)
TP
Recall = TPTEN (10)
Fl-Score — 2 x Precision x Recall (1)

Precision + Recall

where, TP means the prediction is positive and the actual is
positive; FP means the prediction is positive and the actual is
negative; TN means the prediction is negative and the actual is
negative; FN means the prediction is negative and the actual is
positive.

Graphs of the activation functions

To better evaluate the lightweight performance of the model,
parameters and FLOPs operations were selected to assess the
computational complexity of the model.

3 Results

3.1 Comparison of model performance of different attention
mechanisms

Three common attention mechanisms, including CBAMM’,
SE, and ECA, were selected for a comparative analysis of their
impact on the performance of the model. Table 3 presents the
results.

Table3 Comparison of different attention mechanisms

Model Acc/% P/% R/% F1-Score/%
ShuffleNetV2 92.21 91.37 91.48 90.35
ShuffleNetV2+CBAM 91.10 90.82 90.60 89.20
ShuffleNetV2+SE 92.40 92.41 92.00 91.17
ShuffleNetV2+ECA 93.92 93.10 93.00 92.32

Note: CBAM refers to Convolutional Block Attention Module, SE refers to Squeeze-
and-Excitation, and ECA refers to Efficient Channel Attention. Same as below.

Table 3 shows that each metric of ShuffleNetV2+CBAM
decreased, whereas those of ShuffleNetV2+SE and ShuffleNetV2+
ECA increased, with ShuffleNetV2+ECA yielding the highest
scores. The accuracy, precision, recall, and F1-Score of
ShuffleNetV2+ECA were 93.92%, 93.10%, 93.00%, and 92.32%,
respectively, indicating improvements of 1.71%, 1.73%, 1.52%, and
1.97% over ShuffleNetV2.

3.2 Comparison of model performance of different activation
functions

Three common activation functions, Swish, ELU, and
Hardswish, were selected to analyze their impact on model

performance. Table 4 presents the results.

Table4 Comparison of different activation functions

Model Acc/% P/% R/% F1-Score/% FLOPs/M
ShuffleNetV2(ReLU) 9221 9137 91.48 90.35 149.58
ShuffleNetV2+Swish 92.27 91.27 91.33 90.00 149.60
ShuffleNetV2+ELU 92.50 92.00 92.70 91.30 149.58

ShuffleNetV2+Hardswish ~ 92.65 92.33  92.77 92.26 148.10
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Table 4 reveals that using Swish as the activation function
resulted in a model accuracy of 92.27%, a mere 0.06%
improvement over that of ShuffleNetV2. However, the precision,
recall, and F1-Score decreased by 0.10%, 0.15%, and 0.35%,
respectively. The FLOPs increased slightly to 149.60 M by 0.02 M.
Conversely, employing ELU and Hardswish as activation functions
improved all the metrics, with Hardswish outperforming ELU.
Specifically,  ShuffleNetV2+Hardswish  achieved accuracy,
precision, recall, and F1-Score of 92.65%, 92.33%, 92.77%, and
92.26%, respectively, surpassing ShuffleNetV2 by 0.44%, 0.96%,
1.29%, and 1.91%, respectively. Additionally, the FLOPs decreased
to 148.10 M, a reduction of 1.48 M.

3.3 Ablation experiment

Ablation experiments were conducted to investigate the effects
of the CSP structure, HDC, ECA module, and Hardswish activation
function on the ShuffleNetV2 model performance. Table 5 presents
the results.

Table 5 shows that with the introduction of the CSP structure,
the model achieved an accuracy, precision, recall, and F1-Score of
92.55%, 91.42%, 92.16%, and 90.70%, respectively, with 0.924 M
parameters and 103.50 M FLOPs. Compared with ShuffleNetV2,

this represented a modest improvement of 0.34%, 0.05%, 0.68%,
and 0.35%, respectively, while significantly reducing the parameters
and FLOPs by 26.84% and 30.80%, respectively. Substituting
common convolution with HDC resulted in an accuracy, precision,
recall, and F1-Score of 92.93%, 92.45%, 91.67%, and 91.60%,
respectively, with 1.282 M parameters and 153.21 M FLOPs.
Compared with ShuffleNetV2, the model’s accuracy, precision,
recall, and F1-Score increased by 0.72%, 1.08%, 0.19%, and 1.25%,
respectively, with only a slight increase in parameters (0.019 M)
and FLOPs (3.63 M). Upon adding the ECA module, the model
achieved accuracy, precision, recall, and F1-Score of 93.92%,
93.10%, 93.00%, and 92.32%, respectively, with 1.263 M
parameters and 149.58 M FLOPs. Compared with ShuffleNetV2,
while maintaining the number of parameters and FLOPs, these
metrics increased by 1.71%, 1.73%, 1.52%, and 1.97%,
respectively. Using the Hardswish activation function resulted in
accuracy, precision, recall, and F1-Score of 92.65%, 92.33%,
92.77%, and 92.26%, respectively, with 1.263 M parameters and
148.10 M FLOPs. Compared to ShuffleNetV2, with unchanged
parameters, these metrics improved by 0.44%, 0.96%, 1.29%, and
1.91%, respectively, whereas FLOPs decreased by 1.48 M.

Table 5 Ablation experiment

Model CSP HDC ECA Hardswish Acc/% P/% R/% F1-Score/% Param/M FLOPs (M)

- - - - 9221 91.37 91.48 90.35 1.263 149.58

3 - - - 92.55 91.42 92.16 90.70 0.924 103.50

- v - - 92.93 92.45 91.67 91.60 1.282 153.21

- \ - 93.92 93.10 93.00 92.32 1.263 149.58

- - - \ 92.65 92.33 92.77 92.26 1.263 148.10

R v - - 93.44 93.31 92.63 91.95 0.933 105.32

V v - 94.31 93.79 94.17 93.26 0.924 103.50

ShuffleNetV2 3 - - \ 93.51 92.77 93.10 92.14 0.924 102.27
- v \ - 94.80 94.63 94.32 93.60 1.282 153.21

- \ - \ 94.01 93.65 93.93 92.90 1.282 151.72

- - x/ \ 94.34 93.94 94.19 93.20 1.263 148.10

R v v - 94.67 94.35 94.43 93.48 0.933 105.32

V v - Y 94.21 93.00 93.17 92.18 0.933 104.08

3 - \ \ 94.41 93.69 93.94 93.10 0.924 102.27

- v \ \ 94.65 94.39 94.43 93.48 1.282 151.72

CHE_ShuffleNetV2 N v v N 95.02 95.19 94.56 94.00 0.933 104.08

The CHE_ShuffleNetV2 model achieved accuracy, precision,
recall, and F1-Score of 95.02%, 95.19%, 94.56%, and 94.00%,
respectively, representing improvements of 2.81%, 3.82%, 3.08%,
and 3.65%, respectively, over the original model. Regarding model
complexity, the CHE_ShuffleNetV2 model had 0.933 M parameters
and 104.08 M FLOPs, marking reductions of 26.13% and 30.42%,
respectively, compared to the original model.

3.4 Comparison of performance of different models

Figure 13 compares the training results of the lightweight
convolutional neural network models, including ShuffleNetV2,
EfficientNet*, DenseNet*, MobileNetV2*, —and CHE_
ShuffleNetV2. As shown in Figure 13a, the accuracy of each model
steadily increased and converged with the number of iterations.
Notably, CHE_ShuffleNetV2 consistently outperformed other
models in terms of accuracy throughout the training. Figure 13b
shows that the loss values of each model progressively decreased
and converged with increasing iterations, with the loss curve of
CHE_ShuffleNetV2 approaching 0.

The experimental results of the model for the test set are
presented in Table 6.

Table 6 presents that EfficientNet exhibited the lowest
accuracy, precision, recall, and F1-Scores at 90.51%, 88.66%,

88.90%, and 87.38%, respectively, with 4.020 M parameters,
398.03 M FLOPs, and a model size of 15.998 MB. DenseNet
achieved accuracy, precision, recall, and F1-Score of 91.13%,
90.62%, 92.05%, and 90.97%, respectively, with the largest number
of parameters (6.964 M), FLOPs (2880.00 M), and model size
(27.793 MB). MobileNetV2 demonstrated the highest accuracy,
precision, recall, and F1-Score at 92.32%, 92.24%, 92.05%, and
90.97%, respectively, with 2.236 M parameters, 318.97 M FLOPs,
and a model size of 8.975 MB. ShuffleNetV2 achieved slightly
lower metrics than MobileNetV2, with accuracy, precision, recall,
and F1-Score of 92.21%, 91.37%, 91.48%, and 90.35%,
respectively, and the smallest number of parameters (1.263 M),
FLOPs (149.58 M), and model size (5.106 MB).

CHE_ShuffleNetV2 achieved an accuracy, precision, recall,
and F1-Score of 95.02%, 95.19%, 94.56%, and 94.00%,
respectively, with 0.933 M parameters, 104.08 M FLOPs, and a
model size of 3.833 MB. Compared with MobileNetV2, it showed
improvements of 2.70%, 2.95%, 2.51%, and 3.03% in accuracy,
precision, recall, and F1-Score, respectively. Compared with
ShuffleNetV2, CHE ShuffleNetV2 reduced the number of
parameters, FLOPs, and model size by 26.13%, 30.42%, and
25.00%, respectively.
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Figure 13 Accuracy of different model training and loss value change curves

Table 6 Test results of ShuffleNetV2, EfficientNet, DenseNet,
MobileNetV2, and CHE_ShuffleNetV2

Model Acc/% P/% R/% chrle'/% Pa;j‘[“” FLS/IPS/ s?fé’ﬁiﬁ
ShuffleNetV2 9221 9137 9148 9035 1263 14958 5.106
EfficientNet ~ 90.51 88.66 88.90 8738 4020 39803 15998
DenseNet 9113 90.62 9026 89.69 6964 2880.00 27.793
MobileNetV2 9232 9224 9205 90.97 2236 31897 8975

CHE_ShuffleNetV2 95.02 95.19 9456 9400 0933 10408 3.833

Figure 14 shows the confusion matrix of the test results for
ShuffleNetV2, EfficientNet, DenseNet, MobileNetV2, and
CHE_ShuffleNetV2. The numbers on the main diagonal indicate the
ratio of correct identification of each type of wild mushroom. CHE
ShuffleNetV2 exhibited smaller classification errors than the other
models, achieving a 100% identification accuracy for Agaricus,
Entoloma, Hygrocybe, and Suillus. Amanita, Boletus, and
Cantharellus had over 95% identification accuracy, Cortinarius
achieved 90% accuracy, and Lactarius and Russula had 87%
accuracy. The discrepancies for these latter two types of wild

mushrooms could be attributed to the very subtle differences in their
shape and texture, making them difficult to distinguish and resulting
in classification errors.
3.5 Grad-CAM visualization

Grad-CAM (Gradient-weighted Class Activation Mapping) is a
technique in deep learning for visualizing and understanding CNN
decisions. It visualizes CNN decisions by highlighting key regions
with heatmaps. Grad-CAM allows understanding of complex model
decisions without sacrificing accuracy, striking a balance between
interpretability and high performance, while preserving fidelity to
the original model. In this study, Grad-CAM generates heatmaps of
wild mushroom regions by computing gradients of predicted class
scores from the final CNN convolutional layer’s activations. Grad-
CAM analyzes gradients flowing into the final convolutional layer
to highlight key regions of wild mushroom images. Grad-CAM
enhances interpretability, aids in understanding CNN predictions,
debugging, building trust, and revealing biases. As shown in
Figure 15, compared to ShuffleNetV2, CHE ShuffleNetV2 more
effectively focuses on key regions of wild mushroom images in
complex backgrounds™*.
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Figure 14 Confusion matrix

Figure 15 Visualization of the resulting thermodynamic diagram

4 Discussion

The image classification algorithm utilizing ShuffleNetV2
effectively categorized various wild mushroom species, which is
comparable to prior studies“’. To enhance the accuracy of the
model and decrease its complexity, this study conducted four
primary tasks.

Utilizing a HDC, ShuffleNetV2+HDC achieved an accuracy,
precision, recall, and F1-Score of 92.93%, 92.45%, 91.67%, and
91.60%, respectively. These values are 0.72%, 1.08%, 0.19%, and
1.25% higher than those of ShuffleNetV2. The increase in the
number of parameters and FLOPs was minimal at only 0.019 M and
3.63 M, respectively. An HDC enhances the feature extraction
capability of the model by expanding the receptive field".

The addition of the ECA module resulted in accuracy,
precision, recall, and F1-Score of 93.92%, 93.10%, 93.00%, and
92.32%, respectively, for ShuffleNetV2+ECA. This represents an
increase of 1.71%, 1.73%, 1.52%, and 1.97%, respectively,
compared with ShuffleNetV2, while keeping the number of
parameters and FLOPs unchanged. The ECA module avoided the
dimensionality reduction and utilized the 1-dimensional convolution
for local cross-channel interactions, enhancing the extraction of
channel dependencies™.

After introducing the CSP structure, ShuffleNetV2+CSP
exhibited improvements in accuracy, precision, recall, and F1-
Score. It reduced the number of parameters to 0.924 M and FLOPs
to 103.50 M, reductions of 26.84% and 30.80%, respectively,
compared to ShuffleNetV2. This indicated that the CSP structure
effectively reduced redundant gradient information, thus lowering
the network parameter count and computational requirements®.

Using the Hardswish activation function in ShuffleNetV2+
Hardswish maintains the same number of parameters while
improving the accuracy, precision, recall, and F1-Score. The FLOPs
were reduced to 148.10 M compared to ShuffleNetV2, a decrease of
1.48 M. This reduction was due to the Hardswish activation
function, which avoided the computation-intensive Swish function,
thereby reducing the overall calculation load™.

The ablation experiments on interactions between module
components - such as the CSP structure, HDC, ECA mechanism,
and Hardswish activation - show that the CSP structure significantly
reduces the number of parameters and floating-point operations.
Adding HDC and the ECA mechanism significantly improves
classification accuracy. Although adding HDC and the ECA
mechanism increases parameters and floating-point operations, the
increase is minimal. The CSP structure design effectively mitigates
this issue. The model with the Hardswish activation function

effectively reduces floating-point operations without affecting
classification accuracy.

The CHE_ShuffleNetV2 model achieved accuracy, precision,
recall, and F1-Score of 95.02%, 95.19%, 94.56%, and 94.00%,
respectively, representing increases of 2.81%, 3.82%, 3.08%, and
3.65% over ShuffleNetV2. It reduced the number of parameters to
0.933M and FLOPs to 104.08M, reductions of 26.13% and 30.42%,
respectively, compared with ShuffleNetV2. This improved method
reduced the model
complexity, and was suitable for classifying wild mushrooms in

enhanced the classification accuracy,
complex environments.

The confusion matrix of CHE_ShuffleNetV2 shows an
accuracy of 87% in recognizing the Lactarius and Russula species,
slightly lower than for other species. This is due to the high
similarity in shape and texture between these species, as well as
their color and shape overlap with other objects in complex
backgrounds, leading to misclassifications. This is linked to the
model’s ability to handle texture details and edge features,
particularly in complex natural environments, where diverse
backgrounds affect the model’s judgment.

Grad-CAM visualization allows intuitive understanding of the
model’s focus on key regions of wild mushrooms during decision-
making. The improved CHE_ShuffleNetV2 shows a significant
increase in attention to key regions of wild mushrooms, focusing on
larger areas while avoiding irrelevant regions like surrounding
weeds.

Furthermore, the variations in climatic conditions (sunny,
cloudy, and rainy) in images of wild bacteria also affected model
training. The model was required to exhibit sufficient generalization
to accurately classify bacteria under diverse conditions. In this
study, artificial augmentation methods, such as blurring and
brightness adjustment, were used to simulate wild mushroom
images under varying climatic conditions. However, these
augmented images still differ from real-world wild mushroom
images to some extent. Future research will focus on expanding the
dataset by collecting more wild mushroom images from diverse
climatic conditions to enhance the model’s generalization.

CHE _ ShuffleNetV2 has enhanced the classification accuracy of
complex wild mushroom images. Future research will explore the
performance differences of the model on toxic and non-toxic wild
mushrooms. Multi-scale feature fusion techniques will be used to
extract and merge deep and shallow features, improving the model’s
ability to capture features for specific wild mushroom categories
and enhancing accuracy in identifying toxic and non-toxic species.
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5 Conclusion

This study addressed the challenge of low accuracy and
complex structures of existing models by enhancing the lightweight
network model, CHE ShuffleNetV2. First, a dataset of wild
mushrooms comprising 10 categories and 11 007 images was
constructed. This study compared the effects of CBAM, SE, and
ECA on model accuracy, as well as the effects of ReLU, Swish,
ELU, and Hardswish on model complexity. The HDC replaced the
common convolution, and the CSP structure was introduced. The
results indicated that the ECA module most effectively improved
the classification accuracy, while the Hardswish activation function
significantly reduced the model complexity. The HDC enhanced the
model accuracy, and the CSP structure reduced the complexity. The
CHE_ShuffleNetV2 model achieved 95.02% accuracy with
0.933 M parameters and 104.08 M FLOPs. Compared with
ShuffleNetV2, EfficientNet, DenseNet, and MobileNetV2,
CHE_ShuffleNetV2 exhibited superior overall performance.
Consequently, CHE ShuffleNetV2 could accurately and rapidly
classify wild bacterial species, making it suitable for deployment on
resource-constrained devices, such as mobile terminals.
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