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Abstract: In recent years, aquaculture has developed rapidly, especially in coastal and open ocean areas. In practice, water
quality prediction is of critical importance. However, traditional water quality prediction models face limitations in handling
complex spatiotemporal patterns. To address this challenge, a prediction model was proposed for water quality, namely an
adaptive multi-channel temporal graph convolutional network (AMTGCN). The AMTGCN integrates adaptive graph
construction, multi-channel spatiotemporal graph convolutional network, and fusion layers, and can comprehensively capture
the spatial relationships and spatiotemporal patterns in aquaculture water quality data. Onsite aquaculture water quality data and
the metrics MAE, RMSE, MAPE, and R*> were collected to validate the AMTGCN. The results show that the AMTGCN
presents an average improvement of 34.01%, 34.59%, 36.05%, and 17.71% compared to LSTM, respectively; an average
improvement of 64.84%, 56.78%, 64.82%, and 153.16% compared to the STGCN, respectively; an average improvement of
55.25%, 48.67%, 57.01%, and 209.00% compared to GCN-LSTM, respectively; and an average improvement of 7.05%,
5.66%, 7.42%, and 2.47% compared to TCN, respectively. This indicates that the AMTGCN, integrating the innovative
structure of adaptive graph construction and multi-channel spatiotemporal graph convolutional network, could provide an
efficient solution for water quality prediction in aquaculture.
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1 Introduction

The marine aquaculture industry is expanding to coastal and
open ocean areas due to rising demand for seafood and restrictions
on wild catch fisheries!'?”. Large-scale deep-sea cages and
engineered enclosures are crucial for farming fish in the open ocean
due to the vast volume of water, expansive activity space for
aquaculture organisms, efficient exchange of aquaculture water,
high utilization rate of residual feed, and the full utilization of
natural resources in the marine environment. These enclosures
allow for the rapid growth of aquaculture animals. Simultaneously,
organism quality is closer to the natural ecology™. All of these
advantages make breeding organisms in the open ocean an
important aspect in compensating for the depletion of marine
catches®.

In mariculture, seawater serves as the primary medium for the
habitat and material exchange of aquaculture organisms, which are
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highly sensitive to variations in the physical and chemical factors of
water. Even slight fluctuations outside the optimal conditions can
cause physiological stress in the organisms, leading to reduced food
intake, increased energy consumption, and susceptibility to
diseases. For example, inadequately dissolved oxygen (DO) can
cause slow fish growth and even mortality. Conversely, excessively
high DO can make fish susceptible to bubble disease. Large
changes in DO, temperature, pH, and other water quality factors
may directly lead to the death of aquaculture organisms.
Meanwhile, changes in the water quality parameters may lead to the
deterioration of the aquaculture ecological environment, such as
outbreaks of red tide algae, bacteria, parasites, etc.”™ Meanwhile,
water parameters in aquaculture are multi-correlated, highly
complex, and unstable". Increased pH and water temperature can
lead to an increased ionization fraction of NH; in water"*'Yl, The DO
content is easily affected by other water quality factors such as pH
and temperature, and it has the characteristics of nonlinearity, a
large time lag, and instability". Therefore, accurately predicting
water quality data in marine ranches, together with considering the
dynamic relationships between the water quality parameters, is a
pressing issue in the aquaculture industry and could facilitate an
early warning system, further providing a basis for aquaculture
management decisions and realizing sustainable development!”*'?.
Currently, there are three main categories of water quality
prediction methods: traditional time series models, machine
learning methods, and deep learning methods"?. Traditional time
series models primarily rely on autoregressive integrated moving
average (ARIMA) models and their various variants”. For instance,
Wang et al. applied an ARIMA model to dynamic changes in
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reservoir water quality parameters''*. These methods often fail to
meet the requirements of multivariate prediction and nonlinear
trends in water quality prediction tasks'™. Dong et al.'” proposed a
room temperature forecasting model based on the Bezier curve
equation.

Various machine learning methods, such as multiple linear
regression, support vector machines, random forests, and more, are
also used. Ma et al.'"” used a back propagation (BP) neural network
model to predict water quality indicators at reservoir outflow
stations. Otsuka et al.'¥ proposed a seawater temperature prediction
algorithm based on random forests, achieving a prediction accuracy
of around 1°C. Usanapong and Boonnam, focusing on water quality
prediction in seedling nurseries, tested models such as random
forests, decision trees, logistic regression, and naive Bayes
classification!. The results indicated that the random forest model
performed the best in terms of training efficiency, testing efficiency,
and accuracy. Li et al.” proposed a hybrid model based on multi-
scale features for dissolved oxygen prediction in aquaculture.
Nagaraju et al.”"! proposed soft computing coupled with wavelet
analysis to predict ammonia content.

Compared with traditional time series models, machine
learning delves deeper, enabling better fitting of complex patterns.
However, traditional machine learning methods often rely on
manual feature extraction. The relationships between different
parameters and locations in aquaculture water quality are highly
complex, posing a significant challenge for feature engineering®>*.
In recent years, an increasing number of researchers have begun to
use deep learning to investigate water quality prediction tasks. For
instance, Li et al.”” proposed a fusion prediction model, the Long
Short-Term Memory (LSTM) combined with the Temporal
Convolutional Network (TCN), known as the LSTM-TCN, to
predict dissolved oxygen in aquaculture environments. LSTM is
used to extract temporal features, handling long-term dependencies
in complex time series, while the TCN establishes a fusion
prediction model for time series data. Zhou et al.* employed deep
neural network (DNN) and a proportional integral derivative
residual elimination network (PID-RENet) to predict water quality.
Li et al.”” combined graph convolution with LSTM network, using
time decomposition to predict river water quality, providing insights
and methods for aquaculture water quality prediction.

However, the aforementioned prediction tasks suffer from the
following shortcomings: 1) Focusing on predicting multiple
variables at a single location or predicting a single variable at
multiple locations. There is limited focus on tasks involving the
prediction of multiple variables at multiple locations. The
relationships of different water quality parameters in different
locations are intricate. Extracting the mutual impact patterns of
different indicators and locations is of great significance for
predicting multiple variables at multiple locations. 2) Implicit
extraction methods are often employed to understand the influences
of different locations and variables, which weaken a model’s ability
to learn the relationships between different variables. 3) The
interactive relationships between water quality variables often do
not occur in real-time. Previous water quality predictions usually
span a single time frame, making it challenging to extract temporal
patterns across multiple time spans®.

In recent years, spatiotemporal graph convolution models, due
to their ability to simultaneously extract temporal and spatial
features, have found wide applications in the spatiotemporal
prediction domain. For example, Yu et al. and Feng et al.”>*"
employed a spatiotemporal graph convolutional network (STGCN)

to predict traffic flow and speed. Li et al.®" proposed a spatial-
temporal graph convolutional network, which combined the graph
convolution network with Informer to predict air quality. Xing et
al.” employed it to predict the remaining useful life of the power
transformer. Most existing studies utilize graph structures that
heavily rely on predefined structures, wherein a fixed graph matrix
is established based on prior knowledge of the spatial relationships
between variables™!. In water quality prediction for aquaculture,
there are physically meaningful spatial relationships between water
parameters at different depths and semantic spatial relationships
between different parameters. These spatial relationships are
intricate and challenging to capture, which makes the precise
definition of a fixed graph matrix a formidable challenge.

Therefore, this study proposed an adaptive multi-channel
spatiotemporal graph convolution model (AMTGCN). The model
incorporates an adaptive graph construction layer, which is capable
of integrating information gathered by different sensors and
autonomously discerning the complex interdependencies among
various water quality indicators, as well as between water quality
indicators at different depths. Simultaneously, through multi-
channel spatiotemporal graph convolution, the model extracts
patterns of water quality across multiple periods. Additionally, the
study explores the multi-step prediction performance of the
proposed model, aiming to contribute insights into the development
of the deep-sea aquaculture industry.

2 Materials and methods

2.1 Study area

The experimental marine ranch, Blue Diamond No. 2 large-
scale ecological pen, is in Laizhou Bay (LZB), which is located in
the south of the Bohai Sea and is the largest bay in Shandong
Province of China (see Figure 1). LZB is a semi-enclosed shallow
bay, with a mean depth of 9 m (maximum ~18 m), a coastline of
320 km, and a total area of about 700 000 hm***. Hence, the
mariculture industry of Laizhou Bay is well-developed and an
important aquaculture base in northern China. There are many
mariculture farms along the eastern coast of Laizhou Bay, with
various cultural modes and species™. However, the northeast-
southeast currents dominate with a mean velocity of 20 cm/s,
leading to a poor exchange of water’™, which negatively affects the
aquaculture industry.

Study farm

Shandong Province

100 200 km

Figure 1 Overview of the location of the study farm in

Shandong, China

The water quality data were collected from Blue Diamond No.
2 large-scale ecological pen, whose location is shown in Figure 1. It
was installed and is operated by Laizhou Mingbo Aquatic Products
Co., Ltd. Blue Diamond No. 2 facility has a diameter of 160 m and
a depth of about 10 m, including a 20 000 m® nourishing water
body. The breeding species is the spotted knifejaw (Oplegnathus
punctatus), approximately 2 years old.
2.2 Data collection

Figure 2 shows the topological structure of the water quality
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data collection. Water was pumped up to the sensors and multi-
parameter water-quality-monitoring instrument to obtain water
quality values, which were then transmitted using the RS485

Cloud end

Database

Internet

Blue Diamond Water body
No.2

module and 4G network to a cloud platform and stored in a
database™. Users could then read the water quality values via PC or
mobile phone.

Multiparameter water quality
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Figure 2 Topological structure of the data collection system

As pH, dissolved oxygen, and temperature are vital water
quality parameters in aquaculture®”, they were collected in this
research, and the sensors used here are listed in Table 1. All of them
were produced by Shandong Dongrun Instrument Technology Co.,
Ltd, China. The water quality data were collected at three depths,
3 m, 6 m, and 9 m from the surface, as suggested by domain
experts. At each of these depths, pH sensors, dissolved oxygen
sensors, and temperature sensors were installed to monitor the water
quality parameters. The water parameters at each depth were
collected every 30 min. The collection period was from 19th August
2023 to 31st October 2023, this is the main breeding season for the
spotted knifejaw in the marine ranch. Table 2 lists the statistical
analysis of each parameter, from which it can be seen that the
fluctuations in dissolved oxygen (DO) are greater than those in
temperature, while the pH values remain almost unchanged across
different depths. As depth increases, DO content gradually
decreases, with a faster decline observed in the shallower layers
compared to the deeper layers. The standard deviation of DO also
decreases with depth, indicating smaller fluctuations in DO at
greater depths. The data was collected during the summer, which
explains why the temperature in the shallow layers is higher than in
the deeper layers, with temperature variations also diminishing with
increasing depth.

Table 1 Sensors used in this research

Sensors  Measurement range Measurement accuracy Measurement precision
DO 0-20 mg-L™" +2%F.S 0.01 mg-L"
Temperature ~ —10°C-55°C +1%F.S 0.01°C
pH 0-14 +0.1 0.01

Table 2 Statistical analysis of each parameter
DO/mg-L"

Temperature/°C pH

Metrics
3m 6 m 9m 3m 6 m 9m 3m 6m 9m

Min 592 591 585 1560 1560 1510 8.09 8.07 7.93
Max 2749 2287 28.60 29.40 2890 2880 835 835 835
Average 9.49 926 9.25 2353 2351 2351 823 823 822
Std. 133 1.14 126 3.69 3.65 362 0.05 0.05 0.05

2.3 Proposed model
2.3.1 Overall architecture of the model

The AMTGCN model comprises learning modules and an
output module. The learning modules consist of multiple channels,
each composed of a graph construction layer (GCL) and a
spatiotemporal graph convolutional network layer (STGCL). The
output module includes a fusion layer (FL), as illustrated in
Figure 3. To effectively integrate information acquired from
disparate sensors, this study has engineered a graph construction
layer (GCL). This layer operates by treating the data collected from
ecach sensor as a separate sequence, and it learns the
interdependencies among these sequences to construct a graph
structure matrix. This matrix reflects the spatial relationships
between the water quality variables at various time spans and
enhances the model’s convergence speed. The STGCL employs
multiple layers of recurrence to learn the spatiotemporal patterns of
the water quality data, taking the graph structure matrix and water
quality data as the input. The fusion layer integrates the information
obtained from the different learning channels and predicts the water
quality spatiotemporal data.
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Figure 3  Overall structure of the model proposed in this study

In Figure 3, E € R™" represents the entire dataset of the water
quality sequence training data. X € R™ corresponds to the water
quality data sequence input into the model for each iteration,
denoted as X €{x,,x,,x;...x,}, where x;,€{x],x’,x’...x}},neR,
leR and i€[1,n]. Here, nis the number of water quality data
sequences, totaling nine in this study, comprising three indicators
(dissolved oxygen, temperature, pH) at three different depths. L
represents the total length of the water quality training set
sequences, and / is the length of the water quality data input into the
model in each iteration, corresponding to the length of the input
sequence, which is 12 in this research. E is the input into two graph
construction layers, and the random slicing module divides it into
random slices of different lengths in different channels, namely
E;,eR™ and E, eR™™ ", A,, and A, €R™ are the graph
structure matrices constructed by the graph construction layers for
E, and E, respectively, representing the graph structure matrices
at different time spans. Y, and Y|, € R™" denote the outputs of X
Ay, and A, after passing through the different channels of the
STGCL. Ye R™ is the output of the predicted values, where 7 is the
model prediction step size.

2.3.2  Graph construction layer

In numerous previous studies, graph structures often heavily
rely on predefined matrices, in which relationships between
variables are predetermined based on prior knowledge, thus forming
an invariant graph structure matrix. However, this study treated
ecach water quality variable sequence as an individual node, in
which it is impossible to precisely define the relationships between
variables and predefine the graph structure matrix. Hence, this study
proposed a graph construction layer (GCL), which computes the
similarity between different variables over a specified time span
based on the input data, thereby obtaining the graph structure
matrix®®. The graph construction layer is computed using
Equations (1)-(3).

, = sigmoid (ﬁE(i)H,) s (D
, = sigmoid (ﬁE(,ﬂz) s 2
A =topk (softMax (ReLU (alag/%))), 3)

where, E represents the randomly sliced water quality sequence
data, where E; € R™  with n representing the number of water
quality sequences and len denoting the length of the randomly
sliced water quality sequence data. Parameters 6, and 6, are
learnable, and f acts as a hyperparameter controlling the scaling of
the sigmoid output. The outputs of the embedding layer are @, and
@, € R™ where n represents the number of water quality sequence
variables and d is the embedding dimension for the input water
quality data. The topk(-) function retains the k largest values after
calculating the dot product similarity, applying the ReLU and
softMax activation functions, with all other values set to 0. The
resulting matrix is the graph structure matrix A € R™".

This study establishes two graph construction layers (GCLs) for
different time spans®™’. Both layers employ the same method and
structure but differ in the length of the randomly sliced water
quality sequence data. By controlling the length of the sliced data,
the GCL can learn relationships across distinct time spans.
Specifically, this study considers two time spans, a long span of 128
steps and a short span of 24 steps, resulting in corresponding long
time span slices of Ej € R™™ and short time span slices of
E, e R™™"  where long =128 and short=24.The two graph
construction layers operate independently to learn the similarity of
the information gathered by different sensors at 128- and 24-step
intervals, respectively. Consequently, they produce graph structure
matrices corresponding to these specific durations. These matrices
are denoted as A, and A, which belong to the set of real-valued
matrices of dimension nxn, represented as A, and A, € R™".
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2.3.3 Spatiotemporal graph convolutional layer

The spatiotemporal graph convolutional layer (STGCL) serves
as the model’s core component, aiming to learn patterns in the water
quality sequences across spatiotemporal dimensions. The STGCL
comprises two components: the temporal convolutional network
(TCN) for temporal convolution and the spatial convolutional layer
(SCL) for spatial convolution, as shown in Figure 4. Through
multiple recurrent layers, the STGCL comprehensively learns the
spatiotemporal information in the water quality data. With the
incorporation of multiple channels, it can capture spatiotemporal
relationships at various scales. Distinct convolutional kernels and
graph structures are possessed by different channels of the STGCL.
Before entering the fusion layer, these layers operate independently,
with data circulating multiple times within their specific
spatiotemporal convolutional layers“’.

Voo

Figure 4 Spatiotemporal graph convolutional layer structure

Figure 4 shows the computation process of the STGCL. In this
module, the input water quality sequence data Xe R™ undergoes a
TCN. TCN utilizes one-dimensional convolutional kernels of
varying sizes for different channels. The TCN output is then fed
into spatial convolutional blocks to extract spatial features. Residual
connections are employed between the TCN and the SCL to prevent
model gradients from vanishing. Each STGCL iterates multiple
times, extracting spatiotemporal features and passing them to the
next layer of the STGCL. Stacking multiple layers enhances the
model’s learning of intricate spatiotemporal relationships, thereby
improving prediction accuracy.

The SCL in Figure 4 consists of two residual graph
convolutional networks (ResGCN), and each ResGCN utilizes a
graph structure matrix A € R™" and its transposition AT € R™ to
more effectively capture one-directional influences among the
variables!. In Figure 4, X, € R™"® represents the output of the
TCN, and X, € R""** represents the output of the SCL, where 7 is
the number of variables, ' is the compressed length after the TCN,
and d' and d*¢ denote the output dimensions of the TCN and SCL,
respectively.

The input to the STGCL consists of the input data Xe R™ and
the graph structure matrix A € R™". After undergoing m iterations
of spatiotemporal convolutional layers, the module outputs
X’ e R \where n is the number of variables, / is the length
of the input sequence, and d* represents the output dimension size.

The temporal convolutional network (TCN) is utilized to
handle time series data. Rooted in the concept of convolutional
neural network (CNN), the TCN performs convolution operations
along the time dimension and adeptly captures long-term
dependencies within time series data, demonstrating a strong
performance in dealing with extended sequences. By employing
convolutional kernels of varying sizes, the TCN captures patterns at

different temporal scales, enhancing its modeling capability for time
series data. Structurally, the TCN is designed for efficient parallel
computation, providing longer memory retention and higher
parallelism than the traditional recurrent neural network (RNN).
These attributes give the TCN advantages in processing long-term
dependencies and large-scale data. The computation of the TCN is
outlined in Figure 5 and Equation (4)"*.

X, =X®W, 4)

where, X € R™ represents the input into the TCN, where n is the
number of input sequences and / is the length of the input sequence.
The symbol ® denotes the convolution operation, and W, € RP¥™
serves as the convolutional kernel for the TCN, with a size of
1 xkernel, constituting learnable parameters. X, € R (reme+h
represents the output of the TCN. To ensure that the effective length
of the information is consistent for each convolution in ResGCN,
padding is not applied in the TCN section of this study. With each
layer of the TCN, the data length undergoes compression, and the
compression magnitude is (kernel—1).

Q =)
LTIy

Figure 5 Diagram of the temporal convolutional network

Spatial convolutional layer: Graph convolution effectively
utilizes information propagation relationships between nodes. In
this study, various variable sequences are considered independent
nodes. The application of graph convolution improves the
comprehension and prediction of changes in water quality.
Equation (5) represents the graph convolution (GCN)®.

X, =g(X)=D2(I+A)D 1 XW (5)

where, A € R™" represents the graph structure matrix, De R™" is
the degree matrix of 4, I€ R™ is the identity matrix, X, € R™
represents the input water quality sequence, and W stands for
learnable parameters.

Traditional  graph experiences
smoothing, where gradients gradually converge to a fixed value,
posing challenges for updating and impacting the model’s learning

convolution excessive

effectiveness*!. To address this, a novel graph convolution method
was proposed: the residual graph convolutional network (ResGCN).
The core concept is to incorporate the previous ResGCN operation
results into the current one, creating a residual structure>*!. The
ResGCN not only alleviates over-smoothing but also hastens model
convergence and improves generalization. The computation
equation for the ResGCN is provided in Equation (6).

X =g (X0) =
(rg (X¥ ) +(1-7) D_% (1+A)D-§g (Xf“"’)) W, u>1

(rX,+(1 D (1+A)D*%X,) W, u=1
(6)

where, A € R™" represents the graph structure matrix; De R™" is
the degree matrix of 4; Ie R™ is the identity matrix; X e R™
represents the input water quality sequence for the i-th ResGCN
iteration; when i=0, it denotes the output of the TCN; and W
represents learnable parameters.
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In Equation (6), X*~' € R™ denotes the output of the preceding
ResGCN iteration. This method introduces a hyperparameter r,
aiming to balance the weights between the previous and current
ResGCN operations. When r=0, it degenerates to the conventional
GCN formula, and when r=1, it transforms into a fully connected
network. Adjusting the value of r controls the influence of the
graph structure relationships on the model, adapting better to
various application scenarios.

The ResGCN structure, as depicted in Figure 6, involves
X, e R™ as the input for the ResGCN, while X, and H? € R™ are
the outputs of the ith ResGCN iteration. Here, X? continues as the
input for the next iteration, while H? participates in the Concat
operation. X, € R™ represents the output of the ResGCN. The
Concat operation concatenates the outputs at each iteration, and the
MLP serves to selectively fuse information using a 1x1
convolutional kernel, yielding the final ResGCN output.

A
x| g |-xoJg@m] - s -
'
H® HO® H®
+ + +
‘ CONCAT ‘
]
‘ MLP ‘
X,

g

Figure 6 Residual graph convolution structure diagram

The model incorporates two channels for the GCL and STGCL,
each sharing an identical structure. Both channels consist of their
respective GCL and STGCL. By utilizing the GCL with different
time spans, a temporal convolutional network with distinct kernel
sizes, and varying numbers of iterations in the STGCL, the model
aims to extract spatiotemporal relationships at different time scales.
2.3.4 Fusion layer

The fusion layer integrates information from various channels
to predict future data by concatenating the outputs of different
STGCLs with different scales. These concatenated outputs are then
passed through a fully connected layer, generating the prediction
result, as shown in Equation (7).

Y = concat(Y,), Y )W @)

where, Y, and Y € R™ represent the outputs from different
channels, where n denotes the number of sequences in the water
quality data, and 7 represents the prediction step size. W represents
learnable parameters, while concat(-) indicates the concatenation
operation, and Y € R™" is the final prediction result of the model.
2.3.5 Loss function

To comprehensively assess the impact of all data and improve
prediction accuracy, the loss function calculation method involves
initially computing the absolute errors for the predictions of all
variable sequences separately. These absolute errors are then
summed up, as illustrated in Equation (8)“".

n 1<
loss = Z = Z

i=1 j=1

9, =] ®)

where, n represents the number of sequences in the water quality
data, 7 is the prediction step size for each sequence, ¥, denotes the
predicted value of the model for the ;" time step of the ith sequence,

while y’, represents the actual measurement value for the j* time step
of the i" sequence.
2.3.6 Model parameters

Table 3 lists the parameter configurations for each layer in the
model used in this study. Notably, the temporal convolutional
network (TCN) and spatial convolutional layer (SCL) in the
spatiotemporal graph convolutional layer alternate in operation.

Table 3 Model parameter configurations

Number of

Module ) . Parameters
iterations
Graoh Random slice length=128
Taph Embedding dimensions=16
construction 1 —
layer (long) d=16
Granh Random slice length=24
rapi Embedding dimensions=16
construction 1 B=
layer (short)
d=16
TCN kernel=1x4
Spatiotemporal r=0.5
graph 4 TCN includes 4 hidden layers and the dimensions of
convolutional each hidden layer are 16, 128, 64, and 1, respectively,
layer (long) SCL includes 3 hidden layers and the dimensions of
each hidden layer are 64, 128, and 16, respectively.
TCN kernel = 1x2
Spatiotemporal r=0.5
graph 4 TCN includes 4 hidden layers and the dimensions of
convolutional each hidden layer are 16, 128, 64, and 1, respectively,
layer (short) SCL includes 3 hidden layers and the dimensions of
each hidden layer are 64, 128, and 16, respectively.
Fusion layer 1 Hidden layer dimensions=16

Output layer dimensions=1

2.4 Evaluation metrics

To validate the accuracy of the model and compare it with
LSTM, the TCN, the STGCN, the GCN-LSTM, and the single-
channel AMTGCN (denoted as AMTGCN/w), this study employed
the mean absolute error (MAE), as shown in Equation (9); root
mean square error (RMSE), as shown in Equation (10); mean
absolute percentage error (MAPE), as shown in Equation (11); and
coefficient of determination (R?), as shown in Equation (12), as
evaluation metrics. To mitigate the impact of random errors, each
model was independently trained three times, and the average of the
evaluation metrics from the three runs was considered as the final
calculation result.

™>m

1 )
MAE= —— "[5-yi ©)
i=1
1 T™>m . ,
RMSE = Tme(w—y;) (10)
i=1

100% s [9: = il
MAPE = —— —_— 11
TXm Z yi ( )

i=1

™>m

ZG’[ —y;)z

R=1-- (12)

™>m

Z@‘Y{)z

where, 7 represents the prediction time step, m denotes the number
of prediction samples, i is the ith predicted value in the current
sequence, y; is the actual measurement value at the ith position in
the current sequence, and y is the mean value of the actual
measurements.
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2.5 Comparison methods

To effectively evaluate the developed model and show the
performance difference between different methods, current state-of-
the-art methods were compared with the proposed model in this
research. The methods in the comparative evaluation are as follows:

Long short-term memory (LSTM). A unique recurrent neural
network (RNN) model with recurrent layers that is suitable for
processing and predicting time series features with very long
intervals and delays. Its network is effective for solving gradient
disappearance and gradient explosion problems, which often occur
in the traditional recurrent neural network .

Temporal convolutional network (TCN). A variant of the
convolutional neural network (CNN) that combines the advantages
of CNN and recurrent neural network, which is widely used for
extracting spatial and temporal features of time series data for its
dilated casual convolutions and expanded receptive field*’.

Spatial-temporal graph convolutional network (STGCN). It
comprises several spatiotemporal convolutional blocks, which are a
combination of graph convolutional layers® and convolutional
sequence learning layers®’, to model spatial and temporal
dependencies.

Graph convolutional network and long short-term memory
network (GCN-LSTM). The combination of a graph convolutional
network (GCN) and a long short-term memory (LSTM) network, in
which the GCN extracts the spatial features of the non-Euclidean
structure graph data, while the LSTM network extracts the temporal
features of the data™.

2.6 Experimental setup

The input of the model depends on the size of the sliding
window. In this experiment, all data were segmented according to
different sliding window sizes®". To ensure an adequate number of
samples and sufficient information within each sample, the sliding
window size (w) was selected as w ={13,15,18}. As shown in
Figure 7, the blue segment represents the required input data length
for the model (/= 12), and the red segment represents the model’s
output. In this study, multi-step prediction was performed with
output step sizes 7 = {1,3,6}.

=12 t={1,3.6}

=

| Slide window

The total length of the data

Figure 7 Sliding window demonstration

In this study, the dataset was partitioned into training,
validation, and test sets in a ratio of 7:1:2. The programming
language used was Python 3.9, and the deep learning framework
employed was PyTorch. The training process of the model utilized
the Adam optimizer with an initial learning rate of 0.01. The
learning rate was dynamic, decreasing by a factor of 0.1 every 20
iterations. The batch size was set to 256, and the model iteration
count was fixed at 100 during training.

3 Results and discussion

3.1 Loss line analysis

The loss function is used to express the degree of difference
between the forecast and actual data. The smaller the loss function,
the better the robustness of the model. Figure 8 shows the loss
function graph for our AMTGCN and the comparison models. It can
be seen that training loss decreased for all models and converged
after about 40 iterations. The TCN converged earlier than the
AMTGCN, but its loss fluctuated more than the AMTGCN, which
shows that it may be overfitting the test data. The loss of the LSTM,
STGCN, and GCN-LSTM models were all greater than the
AMTGCN, and the loss of the STGCN significantly fluctuated,
which shows that the network is very unstable for water quality
prediction in this situation.

6.0 r — LSTM TCN
50+ STGCN  — GCN-LSTM
— AMTGCN
4.0
é 3.0
2.0
1.0

0

0 10 20 30 40 50 60 70 80 90
Epoches

Figure 8 Loss function of all the models

3.2 Single-step prediction analysis

The MAE, RMSE, MAPE, and R* metrics were employed to
analyze the model’s performance. It is worth mentioning that the
smaller the MAE, RMSE, and MAPE values are, the better the
performance of the model, and vice versa. On the contrary, a larger
R value suggests a better prediction performance.

All the prediction metrics are shown in Figure 9. The red bar
represents the AMTGCN, and the blue bars represent the
comparison models. The AMTGCN has the smallest MAE, RMSE,
and MAPE values and the biggest R* in the dissolved oxygen
content and pH prediction. However, the AMTGCN is slightly
worse than the TCN in temperature prediction, with MAE, RMSE,
MAPE, and R* values being 0.1599°C, 0.2675°C, 0.8783%, and
0.9154, respectively, while the four metrics of the TCN are
0.1596°C, 0.2635°C, 0.8767%, and 0.9179, respectively. Combined
with Figures 10-12, which show a comparison between the
prediction values and the ground truth (to clearly see the difference
between the prediction value and the observation value, some parts
were enlarged), the trends in the DO and pH vary much more than
the temperature trend. This result may be because the AMTGCN,
which integrates the TCN and ResGCN, can capture more
fluctuation information. From a depth perspective, as the depth
increases, the prediction performance for dissolved oxygen
improves. However, there is no apparent pattern observed in the
prediction results for temperature and pH. Table 4 lists the mean of
the metrics at three depths. In this experiment, the MAE, RMSE,
MAPE, and R* of the AMTGCN prediction show an average
improvement of 35.34%, 39.41%, 34.59%, and 10.01% compared to
LSTM, respectively; an average improvement of 74.39%, 65.29%,
74.34%, and 113.71% compared to the STGCN, respectively; an
average improvement of 54.48%, 50.02%, 53.26%, and 30.20%
compared to GCN-LSTM, respectively; and an average
improvement of 3.31%, 2.26%, 4.16%, and 3.33% compared to the
TCN, respectively.
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Figure 9 Comparison of the models in predicting multi-parameters and multi-positions

‘ — Observation
W ---- Predication

a. Depth=3 m
: 15.0 { “/\ —— Observation
= | | iorl ---- Predication
5 12,5 ' P\
] - —
3 d
] 100F
. . . ) ) b. Depth=6 m
15.0 —— Observation
---- Predication

c. Depth=9 m

0 50 100 150

200 250 300
TimeStep

Figure 10 Comparison of the AMTGCN prediction and observation values of the DO

The LSTM and GCN-LSTM models are based on recurrent
neural network (RNN), which has advantages in handling sequential
data. However, from the experimental results, it is evident that the
TCN-type models (AMTGCN, TCN) perform significantly better
than the RNN-type models in prediction tasks"”. This may be
attributed to the stronger ability of the TCN-type models to extract
spatial relationships between multivariate time series data. In
contrast, the RNN-type models are relatively weaker in learning
such relationships, leading to a suboptimal overall performance®.

The comparison between the TCN, STGCN, and AMTGCN
also reveals differences between the models without graphs, models
with graphs, and models with adaptive graphs. For data such as

water quality data without clear physical graph structures, an
incorrect graph structure may actually degrade the prediction
performance. An accurate graph structure is helpful for learning the
spatial relationships between data. Therefore, the adaptive graph
structure of the AMTGCN performs better in prediction than the
TCN or STGCN. Additionally, the STGCN referenced in this study
was initially used for traffic prediction, where there are typically
clear graph structures. This might be a reason for the less-than-ideal
prediction results.

Further comparison between the TCN and AMTGCN
experimental results indicates that establishing an adaptive graph
can effectively enhance the model’s prediction accuracy when
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Figure 11 Comparison of the AMTGCN prediction and observation values of the water temperature
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Figure 12 Comparison of the AMTGCN prediction and observation values of the water pH
Table4 Error analysis between the AMTGCN and the other influences. This suggests that, compared to the TCN, the model of

comparison methods this study exhibits better adaptability and predictive capabilities for

Variables Metrics  AMTGCN TCN LSTM GCN.LSTM STGCN data with different feature distributions and interaction patterns.
3.3 Multi-step prediction analysis
Most traditional environmental prediction methods are

MAE/mg-L"  0.2513 0.2661 0.4291 0.5206 0.9030

DO RSEme LT 04998 09242 09349 09804 12459 designed for single-step prediction, which plays a limited role in
MAPE/% 2.2394 2.3728 3.6407 4.5797 8.3164 ’

R 0.7359 0.7075 0.5333 0.4914 0.1520

MAE/°C 0.1434  0.1413 0.1826 0.3485 0.6463

RMSE/°C 0.2252  0.2148 0.2685  0.4787 0.857

aquaculture farm management and early warning"”. Hence, multi-

step prediction is more meaningful than single-step prediction, and
investigation of a model’s accuracy and time step relationship can

Temperature also evaluate a model’s capacity for long time periods®™.
MAPE/% 0.7828  0.7718 0.9926 1.9059 3.5607 .
o 00514 09547 09316 07970 03807 In this research, the collected data was used to assess the
: : : i : accuracy of the AMTGCN at three distinct time steps: single-step
MAE 0-0060 ~ 0.0070 0.0081 0.0112  0.0152 prediction, three-step prediction, and six-step prediction. The
pH RMSE 0.0123 00151 00130 0.0156 0.0209 duration of each was 30 min, 1.5 h, and 3 h, respectively. As the one-

MAPE/% 0.0730  0.0848 0.0983  0.1365 0.1845
R 0.8815  0.8237 0.8701 0.6844 0.6693

step prediction results are shown in Section 3.2, Figure 13 only
illustrates the comparison of the multi-step (three-step and six-step)

) ) ) ) ] o prediction errors of the three parameters. This study employed the
dealing with data with different spatial distributions and mutual averaged MAE, RMSE, MAPE, and R at the three depths to assess
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the performances of each model in predicting the DO concentration,
temperature, and pH. The metric results are shown in their
respective columns. Additionally, the red bar represents the result of

the AMTGCN. Figure 13 shows that the AMTGCN outperformed
the TCN, LSTM, GCN-LSTM, and STGCN in all three of the water
quality parameters.

B AMTGCN = TCN LSTM GCN-LSTM m STGCN
_ 200 1.20 ¢ 0.04 -
- £ 080} 0
£ 1.00F fé %: 0.02 -
U<-1 I I S 040 I I I
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= 24
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Figure 13  Comparison of the multi-step prediction accuracy of the three parameters

Specifically, in the three-step predictions, the MAE, RMSE,
MAPE, and R* of the AMTGCN results showed an average
improvement of 30.06%, 32.73%, 31.79%, and 14.40% compared to
LSTM, respectively; an average improvement of 66.73%, 58.58%,
67.13%, and 169.74% compared to the STGCN, respectively; an
average improvement of 56.68%, 48.69%, 59.04%, and 69.81%
compared to the GCN-LSTM, respectively; and an average
improvement of 9.94%, 8.24%, 10.05%, and 4.00% compared to the
TCN, respectively. In six-step predictions, the MAE, RMSE,
MAPE, and R* of the AMTGCN results showed an average
improvement of 36.62%, 31.64%, 41.78%, and 28.70% compared to
LSTM, respectively; an average improvement of 53.40%, 46.47%,
52.99%, and 176.02% compared to STGCN, respectively; an
average improvement of 54.60%, 47.31%, 58.73%, and 526.99%
compared to GCN-LSTM, respectively; and an average
improvement of 7.91%, 6.46%, 8.07%, and 0.07% compared to the
TCN, respectively. Considering three experiments (single-, three-,
and six-step), the AMTGCN results showed an average
improvement of 34.01%, 34.59%, 36.05%, and 17.71% compared to
LSTM, respectively; an average improvement of 64.84%, 56.78%,
64.82%, and 153.16% compared to the STGCN, respectively; an
average improvement of 55.25%, 48.67%, 57.01%, and 209.00%
compared to GCN-LSTM, respectively; and an average
improvement of 7.05%, 5.66%, 7.42%, and 2.47% compared to the
TCN, respectively.

It is worth noting that the GCN-LSTM model prediction
performance is poor, with a minus R* value when =6 for DO
prediction. This is closely related to the nonlinearity and uncertainty
of the DO content itself, and the GCN-LSTM could not effectively
capture the characteristics of the variation, leading to a low
prediction accuracy.

The variance of the DO content in the first 3010 data points

was 0.77, and the mean value was 9.06 mg/L, while the variance in
the last 522 data points was 3.15, and the mean value was
10.88 mg/L; the distribution characteristics of the DO time series
data shows a large change. Compared with the other two
parameters, the DO content displays a different change pattern over
time due to its own characteristics. The DO changed more steadily
in the former period and greatly fluctuated in the later period, which
was a large change from the previous series change pattern.
Changes in the water quality indicators will be affected by the
environment, climate, and other factors, which will undoubtedly
increase the forecasting difficulty. The time series processing
methods, such as Empirical Mode Decomposition (EMD) and
wavelet transformation, may be used to conduct time-series
predictions based on different scales and frequency features to
extract features, thus improving the prediction performance®™.
3.4 Error analysis

The comparative error distribution of each model is illustrated
in Figures 14, 15, and 16. From a depth perspective, it was observed
that as the depth increases, the prediction MAE range of all the
models for dissolved oxygen becomes narrower, as shown in
Figure 14. The temperature prediction error distribution remained
relatively invariant, with the exception of the STGCN model, which
exhibited a broader error range in one-step predictions, as illustrated
in Figure 15. pH prediction errors showed relatively small ranges at
a depth of 6 m compared with depths of 3 m and 9 m, as evidenced
in Figure 16. With increasing prediction steps, there is a
concomitant degradation in the performance of all the models. In
these experiments, the AMTGCN model provides a small MAE and
narrow MAE range, standing out for its robustness.
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Figure 15 MAE analysis of temperature prediction at each step

The error distribution can also intuitively reflect the stability
and accuracy of the model’s predictions. Comparing the three
models that utilized graph convolution - AMTGCN, GCN-LSTM,
and STGCN - it can be observed that the maximum errors of the
GCN-LSTM and STGCN are consistently the highest, indicating
that these two models performed poorly in predicting the
experimental data.

From the perspective of stability, the error distribution of the
GCN-LSTM and STGCN models is not concentrated and generally
larger, while the error distribution of the AMTGCN model is
concentrated and centered at lower levels, indicating better model
stability compared to the other models. Regarding generalization,

although the errors of all models inevitably increase with increasing
steps, the AMTGCN remained in the optimal position,
demonstrating superior performance. The relatively small variation
in the error distribution of the AMTGCN indicates better
generalization, whereas the larger fluctuations in the GCN-LSTM
and STGCN models suggest poorer generalization.
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Figure 16 MAE analysis of pH prediction at each step

The performances of the AMTGCN, TCN, and LSTM models
are quite comparable. Even when predicting pH at a depth of 6 m in
a single step, the maximum absolute error of the LSTM model is
smaller than that of the AMTGCN. However, as the prediction step
increases, LSTM exhibits greater fluctuations, indicating that it is
less generalized compared to the AMTGCN. The error distribution
of the AMTGCN and TCN is very close, but the AMTGCN
outperforms the TCN in terms of the maximum error, error
concentration, and median, suggesting that the AMTGCN is more
effective than the TCN, as shown in the enlarged box.

3.5 Ablation study

Table 5 lists the ablation experimental results on the multi-
channel STGCL to validate its essential properties. Here, the
AMTGCN/w represents the single-channel STGCL model. The
metric values are the average at the three depths. As indicated in
Table 5, in single-step prediction, the AMTGCN outperforms the
AMTGCN/w when predicting pH, which may be because pH
changes subtly compared to DO and temperature. In multi-step
prediction (=3, 1.5 h; =6, 3 h), the AMTGCN had a better
prediction performance than the AMTGCN/w in all three
parameters. Comparing the AMTGCN/w with the AMTGCN, when
the prediction step was a single step, the AMTGCN/w demonstrated
local superiority over the AMTGCN. However, when the prediction
step exceeded a single step, the performance of the AMTGCN
surpassed that of the AMTGCN/w. This may suggest that with an
increase in the prediction scale, different time channels spanning
various durations can effectively enhance the model’s predictive
capabilities.
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Table 5 Comparison of the AMTGCN ablation experiment in water quality prediction
. DO Temp. pH
Step Metrics
AMTGCN/w AMTGCN AMTGCN/w AMTGCN AMTGCN/w AMTGCN
MAE 0.2495 0.2513 0.1383 0.1434 0.0062 0.0060
RMSE 0.4980 0.4995 0.2165 0.2252 0.0124 0.0123
= MAPE/% 2.2220 2.2394 0.7537 0.7828 0.0751 0.0730
R 0.7374 0.7359 0.9541 0.9514 0.8807 0.8815
MAE 0.3036 0.2980 0.2421 0.2345 0.0092 0.0088
RMSE 0.5583 0.5434 0.3724 0.3660 0.0173 0.0166
3 MAPE/% 3.3094 2.6952 2.1260 1.2785 0.1446 0.1072
R 0.6665 0.6824 0.8811 0.8851 0.7700 0.7875
MAE 0.3600 0.3572 0.3903 0.3784 0.0119 0.0118
=5 RMSE 0.6054 0.6052 0.6042 0.5945 0.0209 0.0209
MAPE/% 3.3095 3.2833 2.1260 2.0595 0.1446 0.1434
R 0.6056 0.6058 0.6965 0.7062 0.6652 0.6659
4 Limitations Acknowledgements

There are some limitations in this research. As the sensors are
sensitive to the ocean environment and easily corroded by marine
water, the water quality parameter was tested by pumping marine
water up to the multi-parameter
instrument through a tube, which led to a low sampling frequency

water-quality-monitoring

and an insufficient amount of available data to facilitate the
examination of more sophisticated maps.

Because the culture season in the offshore large-scale
aquaculture pen is from July to October, and some time is needed to
debug the monitoring and data collection system, the data used does
not cover the whole culture season. At the same time, because of the
cost of the experiment, weather data was not collected nor
incorporated into the developed model.

5 Conclusions and future research

Water quality is of great significance for aquaculture, which is
characterized by complex nonlinearity and instability, and water
quality variables often exhibit complex correlations with each other.
Hence, it is difficult to precisely predict them and further support
aquaculture management. This study proposed a predictive model
based on spatiotemporal convolution, introducing adaptive graphs
and multi-channel spatiotemporal convolution layers to enhance
prediction accuracy. The adaptive graph can automatically extract
relationships between variables to construct a graph matrix,
eliminating the need for a predefined graph matrix. Comparative
experiments with LSTM, TCN, STGCN, and GCN-LSTM models
revealed that the AMTGCN exhibits superior performance in
predicting water quality tasks with complex water quality data. This
suggests that this model yields better results when dealing with data
possessing intricate structures and unclear structural relationships,
offering a new approach and perspective for spatiotemporal
predictions of water quality data. Finally, the model can be
extended to other similar sequential prediction domains.

In the future, efforts will be dedicated to optimizing the
AMTGCN for higher prediction accuracy and lower model
complexity. This may involve exploring more efficient time
convolution methods and precise adaptive graph construction
algorithms to expedite model training and enhance its effectiveness.
Additionally, considering the relatively small dataset in this study,
validation and optimization on larger datasets can be explored to
improve the model’s generalization performance. Finally, weather
data will be collected together with water quality parameters to
further improve the prediction performance.

This work was funded by the National Key Research and
Development Program of China: Sino-Malta Fund 2022
“Autonomous Biomimetic Underwater Vehicle for Digital Cage
Monitoring” (Grant No. 2022YFE0107100).
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