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Effect of bioaugmentation on start-up phase of anaerobic digestion
at high organic loading rate
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Abstract: In order to enhance the start-up of anaerobic digestion (AD), the propionate-degrading methanogenic cultures were
introduced to AD of food waste at a high organic loading rate (OLR) of 3.0 g VS/L-d in this study, and the efficiency of
different bioaugmentation strategies were investigated. The results demonstrated that bioaugmentation significantly improved
the start-up efficiency and enhanced the methane production. Specifically, higher dosage and frequency of bioaugmentation had
a positive effect on the performance of the AD reactors. Among three bioaugmented reactors, the reactor with a
bioaugmentation strategy of 0.675 g VS/L of bioaugmentation seed added every 5 d during the first hydraulic retention time
(HRT) performed the best and remained relatively stable for the next three HRTs without bioaugmentation. The 16S rRNA
gene sequencing analysis revealed that Methanothrix predominated in bioaugmented reactors. A large proportion of
Methanothrix accompanied by a small proportion of Methanospirillum played a key role in volatile fatty acid degradation and
contributed to the successful start-up and long-term stability of AD at a high OLR. These findings suggest that bioaugmentation
with methangenic consortium is a promising strategy to boost the AD process at high OLRs and achieve higher treatment
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capacity of food waste.
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1 Introduction

Improper disposal of up to 33% of food waste (FW) annually
worldwide (equivalent to approximately 1.3x10° t) presents a
significant environmental, economic, and human health challenge!.
Traditional methods of organic waste treatment, such as landfills,
incineration, composting, and other technologies, often result in
greenhouse gas emissions (CH,;, CO,) or environmental pollution
that is not consistent with sustainable development goals!**.
Anaerobic digestion (AD) presents an efficient and eco-friendly
solution for disposing of FW while also producing renewable
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energy in the form of biomethane!”.

FW typically contains a high percentage of volatile solids (10%-
30% fresh matter) and is easily degradable, resulting in rapid
degradation, acidification, and the production of significant amounts
of volatile fatty acids (VFAs) during AD process at high organic
loading rate (OLR)®. High acidity levels have been known to
inhibit methanogen activity, leading to decreased methane yields
and system instability”. Therefore, AD systems usually start with a
low OLR (0.5 g VS/L-d) and gradually increase to a higher OLR to
avoid acid accumulation”. However, this approach is time-
consuming and fails to achieve optimal methane yields during the
start-up phase. Thus, strategies for starting and
maintaining an AD process for FW at high OLRs are necessary.

Various strategies have been proposed to improve the start-up
phase of AD. These include using acclimated inoculum to
accelerate the process'"”, supplying trace elements to increase
enzyme content and microbial activity at an initial OLR of
2.0 g VS/L-d", adding biochar to improve direct electron transfer
between microorganisms to start-up AD atan OLR of 1.5 g VS/L-d!",
and co-digestion of wastewater sludge with dairy manure to balance
the C/N ratio of digestion system!*'¥. The main mechanism behind
these methods is to improve the density and activity of functional
microbes in the AD system. Bioaugmentation is a promising
strategy to promote specific microbial functions™. For instance,
reactors bioaugmented with a mixed strain of Methanosarcina
barkeri or Syntrophaceticu schinkii with Methanobrevibacter

effective

smithii showed a 35% increase in methane production"®. Tian et
al.'"! discovered that the bioaugmentation inoculum composed of
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hydrogenotrophic  methanogen Methanoculleus  thermophilus
stimulated the growth of syntrophic acetate oxidizing bacterium
Thermacetogenium phaeum, which led to an increase of methane
yield by 11%-13% and a decrease of volatile fatty acids (VFA) by
45%-52%. Therefore, bioaugmentation is an advantageous
approach to enhance biogas production, as it can directly increase
the abundance of specific methanogen or acetate-oxidizing bacteria.
This approach is increasingly receiving attention in research.

VFAs accumulation, particularly acetate and propionate acid, is
commonly considered a major inhibitory factor in AD systems!".
Propionate acid is a crucial organic VFA because its consumption
depends on hydrogen partial pressure and acetate levels'”. Previous
studies have acclimated methanogenic cultures for propionate acid
degradation®?" to boost AD treating FW at high OLR®**! by
accelerating VFAs degradation. However, there are few studies on
bioaugmentation with methanogenic cultures to start anaerobic
digestion of food waste at high OLR.

In this study, OLR of anaerobic digester was gradually
increased to determine the start-up threshold. Four semi-continuous
AD reactors (i.e., a control group without bioaugmentation and
experimental groups with different bioaugmentation strategies)
were conducted at the selected start-up OLR to evaluate the
bioaugmentation performance. Additionally, 16S rRNA gene
sequencing was performed to reveal the changes in the microbial
composition before and after bioaugmentation. This study aims to
provide insight into whether bioaugmentation strategies can shorten
the start-up phase and boost performance for AD of food waste.

2 Materials and methods

2.1 Feedstock, inoculum, and bioaugmentation seed

The FW used in this study was obtained from the canteen at
Guangzhou Institute of Energy Conversion, Chinese Academy of
Sciences, China. The FW primarily consisted of table waste and
underwent a preparation process to remove bones, plastic, napkins,
and other non-food waste. The FW was stored at —20°C until use.
The FW had the following composition: carbohydrate content of
53.60%=+0.20%, lipid content of 12.56%=+0.48%, and protein
content of 26.38%+0.79%. The inoculum used in the experiment
was collected from the food waste treatment biogas plant (Foshan
Hanlan Green Electric, China). The biogas plant operated at 37°C,
and the inoculum had previously been used to initiate a batch
mesophilic reactor, demonstrating its good capability for methane
production®. Prior to use, the inoculum was degassed.

The bioaugmentation seed (BS) were collected from a 75 L
continuous stirred tank reactor (CSTR) (Kemi, China) fed with a
basic nutrient medium containing propionic acid at an organic
loading rate of 0.5 g VS/L-d, located at Guangzhou Institute of
Energy Conversion, Chinese Academy of Sciences. The nutrient
medium contained the following ingredients (mg/L): NH,Cl (400);
MgSO,-6H,O (250); KCl1 (400); CaCl,-2H,O (120); (NH,),HPO,
(80); FeCl;6H,0 (55); and the trace element salts (i.e.,
CoCl, 6H,0, NiCl, 6H,0, MnCl, 4H,0, CuCl, 2H,0, AICl;-6H,0,
ZnCl,, Na,WO,2H,0, H;BO;, Na,SeO;, and Ma,MoO,-2H,0)
(each at 0.5). The BS reactor had stably run for more than 300 d
with the methane production of 0.15 L/L-d. The predominant
bacteria were Methanothrix and Syntrophobacter, as reported in the
recent study™?!. The basic characteristics of FW, inoculum, and BS
are listed in Table 1.

2.2 Experimental set-up and procedures

Two rounds of experiments were conducted as shown in

Figurel. In the first round, a group of 2 L mesophilic CSTR reactors

with a working volume of 1.8 L were operated for 80 d (an HRT of
20 d) to determine the threshold of the OLR-stressed AD process.
The initial OLR was set at 1.0 g VS/L-d, then was increased to 1.5 g
VS/L-d at the second HRT, 2.0 g VS/L-d at the third HRT, and 3.0 g
VS/L-d at the fourth HRT, respectively. All reactors were flushed
with N, to remove headspace air at the beginning. The biogas yield
was measured using a 100 mL syringe, and biogas content was
recorded every 3 d. Liquid samples were collected every 8 d for pH
and VFAs analysis.

Table 1 Basic characteristics of raw materials, inoculum, and
bioaugmentation seed

Parameters Food waste Inoculum Bioaugmentation seed

pH - 7.65+0.05 7.80+0.04

TS/% 22.3540.32 1.91+0.21 1.35+0.09

VS/% 21.01+0.11 1.0440.25 0.41+0.04

C/% 53.02+0.02 - -

N/% 2.57+0.09 - -

H/% 7.90+0.07 - -

C/N 20.86+0.92 - -

Note: Data are presented as mean+standard deviation (n=3); TS: total solids; VS:
volatile solids; “-’ not detected.
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Figure I Main operational conditions of experimental reactors

In the second round of experiments, four groups (R1, R2, R3,
and RC) were established to compare the effectiveness of different
bioaugmentation strategies in boosting the start-up phase.
Mesophilic CSTRs with a working volume of 1.8 L were started up
using the same inoculum as in the first round. The reactors were fed
once a day with an OLR of 3.0 g VS/L-d and an HRT of 20 d. The
whole process lasted for 160 d and was divided into four phases:
Phase I (0-20 d), Phase II (20-80 d), Phase III (80-100 d), and Phase
IV (100-160 d). During phase I, bioaugmentation was performed on
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R1, R2, and R3. Specifically, bioaugmentation involved
centrifuging the BS at 4000 r/min for 5 min, followed by decanting
the resulting supernatant to collect the microbial biomass precipitate
for use in bioaugmentation. Bioaugmentation dosages were reported
between 4%-35% for AD of chicken manure and straw, and the
dosage of 0.675 g VS/L was set based on the pre-experiment results
of batch AD tests**. Specifically, in R1, BS at a concentration of
2.700 g VS/L was added once at the beginning of the first HRT. In
R2, BS at a concentration of 1.350 g VS/L was added once at the
beginning of the first HRT. In R3, BS at a concentration of 0.675 g
VS/L was added four times every 5 d (total 2.700 g VS/L) during
the first HRT, and the same bioaugmentation process was repeated
during the fifth HRT. The reactor without the addition of BS was set
as the control group (RC). After the first HRT with
bioaugmentation, the reactors ran for the subsequent three HRTs to
evaluate the efficiency of bioaugmentation (Figure 1).
2.3 Analytical methods

TS and VS were determined using standard methods®”. C, N,
and H contents were measured using a Vario EL element for
analysis (Elementar Analysensysteme GmbH, Hanau, Germany).
The pH was measured using a METTKER TOLEDO (FE28)
portable meter (Mettler Toledo, Swiss) with a glass electrode
calibrated in buffers at pH 4.01, 7.00, and 9.21. Alkalinity was
detected with 0.25 mol/L H,SO, to endpoints at pH 5.7 and 4.3,
allowing total, partial, and intermediate alkalinity to be calculated.
The VFAs concentration was measured using a high-performance
liquid chromatography system (2698, Waters, USA ). The FW
composition (carbohydrate, lipid, and protein) was measured
according to GB-5009.5, GB-5009.6 and GB-5009.8. A Bio-RAD
column is equipped in this system at a temperature of 50°C. The
mobile phase was 0.5 mmol H,SO, at a flow rate of 0.5 mL/min.
Biogas production was measured using a 100 mL syringe every 2 d,
and 100 mL of biogas was extracted to analyze its methane content
by gas chromatography (GC-2014, Shimadzu, Kyoto, Japan)
equipped with a thermal conductivity detector at a temperature of
120°C and a Porapak Q column at a temperature of 70°C, and the
carrier gas was argon (20 mL/min)®!. Statistical analysis was
calculated by Microsoft Excel 2016.
2.4 16S rRNA gene amplification

Samples from R1 (days 0, 30, 40, 60, and 80), R2 (day 0, 30,
40, 60, and 68), R3 (days 0, 30, 40, 60, 80, 100, 120, 140, and 160),
and RC (days 0 and 30) were collected for microbial dynamic shift
analysis. As previously described™, DNA extraction and 16S rRNA
gene sequencing were carried out. The resulting sequences were
systematically assigned to phyla, classes, and genera. The results
were included to compare and analyze the microbial community
structure between the bioaugmentation and control groups.
Sequence data were deposited in the National Center for
Biotechnology Information (NCBI) Short Read Archive database
(accession number: PRINA849406).

3 Results and discussion

3.1 Start-up performance of anaerobic digestion of food waste
by increasing the organic loading rate stepwise

To investigate the effect of OLR on AD during the start-up
phase, a gradual increase in the OLR was applied. Figure 2 shows
that AD system failed at an OLR of 3.0 g VS/L-d, as evidenced by a
significant decline in volumetric biogas production (VBP) and
methane yield. This failure can be attributed to the accumulation of
high levels of VFAs, specifically acetate (1716.50+139.50 mg/L)
and propionate (2204.50+157.50 mg/L), at the OLR of 3.0 g

VS/L-d. This observation aligns with a previous study that reported
AD collapses at acetate levels of 1600 mg/L and propionate levels
of 900 mg/L""\. Propionate concentrations exceeding 900 mg/L can
lead to severe damage to the AD system, primarily due to the
difficulty of its degradation, particularly under low pH conditions®".
Thus, an OLR of 3.0 g VS/L-d exerted an inhibitory effect on AD,
promoting subsequent bioaugmentation experiments aimed at
boosting start-up phase.
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Figure 2  The start-up performance of food waste AD by

increasing OLR stepwise

3.2 Effects of bioaugmentation during high OLR start-up

The methane yield of the RC exhibited a sharp decrease and
eventually dropped to zero on day 27, indicating a system collapse.
By contrast, the methane yield of all bioaugmented reactors was
higher than that of RC (Figure 3). Besides, the average methane
yield of R1 (4x BS, once every four HRTs, 0.48 L/g VS), R2 (2%
BS, once every four HRTs, 0.41 L/g VS), and R3 (1x BS, 4 times
every four HRTs, 0.53 L/g VS) were 0.26, 0.05, and 0.39 times
higher, respectively, than that of the reactor stepwise increased OLR
to 3.0 g VS/L-d in the first round (0.38 L/g VS) during the first four
HRTs. Thus, these bioaugmentation strategies were effective for
quickening and boosting start-up of the high-OLR system, while a
long time was needed for gradual stabilization of general reactors in
previous reports®®. In addition, among the three bioaugmented
digesters, R3 with high-frequency bioaugmentation not only
exhibited the best performance in increasing methane yield, but also
maintained a steady phase lasting for four HRTs, indicating that
multiple-frequency bioaugmentation was more effective than one-
time bioaugmentation. Therefore, the frequency and dosage of the
BS addition play a crucial role in maintaining the stability of AD
start-up at high OLR by increasing the immobilization of propionate-
utilizing cultures. Considering the slight decline in methane yield of
R3 during the fourth HRT, the same bioaugmentation strategy was
implemented during the fifth HRT. The methane yield from day 80
to 160 followed a similar trend to that from day 0 to 80. Hence,
bioaugmentation every four HRTs is an effective strategy to
maintain a high methane yield.

The alkalinity ratio, defined as the ratio between intermediate
and partial alkalinity (IA:PA), is a useful indicator of the stability of
the AD system. An IA:PA value exceeding 0.9 suggests a high risk
of system failure®. As shown in Figure 4, the value of [A:PA in RC
increased sharply at the beginning and reached to 1.28+0.20 on day
28, indicating system instability. The IA:PA values of R1 and R2
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ranged from 0.40 to 0.60 during day 0-20 bioaugmentation phase
and the following 20 d, after which they exceeded 0.90, suggesting
a loss of efficacy in the bioaugmentation strategies, consistent with
the aforementioned biogas production. In contrast, the IA:PA of R3
remained within the range of 0.51 to 0.59 throughout the entire
experimental period, suggesting a stable system.
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Figure 3 Bioaugmentation performance of the semi-continuous

anaerobic digestion process

During the first HRT, there was no significant accumulation of
VFAs in the bioaugmented digesters compared to RC. However,
after running for two HRTs, the total VFAs accumulated in R1
(6853.50+1130.50 mg/L) and R2 (7036.50+26.50 mg/L), primarily
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consisting of acetic acid and propionic acid (Figure 5). These

observations consistent studies where
propionate accumulation occurred when R1, R2, and RC were on
the verge of collapse®**. In contrast, the total VFAs concentration
in R3
(<1500 mg Hac/L) throughout the experimental period (Figure 3),
indicating system stability. Thus, an optimal dosage and frequency
of BS addition effectively prevented total VFAs accumulation in the
reactors under high OLR. The change in pH was associated with the
change in total VFAs, that is, the accumulation of total VFAs led to
a drop in pH. As shown in Figure 3, the pH of RC sharply decreased

to 6.57+0.24, which was detrimental to methanogen growth and

were with previous

remained below the defined healthy concentration

limited the methanogenesis process,
accumulation of VFAs and led to decrease in methane production
(Figure 3 and 4). The pH of R1 and R2 remained stable during the
first two HRTs but decreased in the third HRT, indicating the
failure of BS addition. In comparison, the pH of R3 fluctuated
between 7.00 and 7.50 throughout the entire experimental period,

which was caused by

indicating that BS addition with optimal dosage and frequency
contributed to a good buffer capacity in the AD system.
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Figure 4 The alkalinity ratio of the semi-continuous anaerobic
digestion process
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Figure 5 The concentration of VFAs in R1, R2, R3, and RC

Overall, bioaugmentation proved to be effective in enhancing
the start-up phase of anaerobic digestion of food waste under
high OLR conditions, resulting in improved biogas production,
VFAs degradation, and buffer capacity. Furthermore, the success of
bioaugmentation was found to be closely related to the frequency
and dosage of addition. The bioaugmentation strategy with high
frequency and high dosage, as demonstrated by R3 (1x BS 4 times
every four HRTs), not only exhibited the best performance but also
sustained its effect over a longer period.

3.3 Influence of bioaugmentation on bacterial community

composition

Beta diversity analysis revealed that the bacterial composition
of R3 differed from that of the other two bioaugmented reactors
(Figure 6a), indicating that the bioaugmentation effect varied
depending on dosage and frequency. In addition, there was a
difference between the initial and final bacterial composition of R3.
This suggests that the BS was well-suited to the inoculum consortia
and gradually adapted to the high-OLR system. In contrast, the BS
in R1 and R2 were incompatible after two HRTs.

The relative abundance of the bacterial communities at the
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Figure 6 The effect of bioaugmentation on bacterial community

genus level across different groups is shown in Figure 6b, providing
insight into the influence of bioaugmentation. At the beginning
stage, no remarkable differences were found in the major bacteria
among all reactors. However, different bioaugmentation strategies
had similar but varying effects on microbial populations.
Specifically, the increased and dominant genera included
Syntrophomonas (0.15%-8.89%), Candidatus Cloacamonas (0.05%-
12.09%), Petrimonas (0.08%-11.41%), Prevotella (0.22%-80.82%),
and some unclassified bacteria. Streptococcus, which can convert
carbohydrates to glucose, showed an increasing trend in relative
abundance (approximately 4.5%), contributing to the efficient
degradation of FWP*! Prevotella was predominant in all reactors
as an efficient player in degrading proteins®”. VFAs started to
accumulate notably as the abundance of Prevotella increased, which
was consistent with earlier findings®®. The relative abundance of
Syntrophomonas increased by 0.88%-3.60% in all bioaugmented
reactors on day 30, which enhanced the syntrophic conversion rate
of butyrate to acetate™. Similarly, Candidatus Cloacamonas was
also enriched in the bioaugmented digesters, which participate in
the oxidation of propionate to acetic acid, CO,, and H,**1. The
establishment of these genera indicated that the introduction of
bioaugmentation was prominent in propionate and butyrate
degradation. Although the Shannon and Simpson diversity indices
were similar among all bioaugmented groups, there is still a need to
highlight that a higher frequency of BS addition to R3 led to a more
stable microbial community during Phase IV (100-160 d) compared
to the other reactors (p<0.01, Table 2).
3.4 Influence of bioaugmentation on methanogen community
composition

As shown in Figure 7a, the methanogenic communities in the
early stage of reactors were similar, but differences appeared
between the well-performing R3 and the three above reactors. To
gain a better understanding of the effects of different
bioaugmentation strategies, Figure 7b methanogenic
populations in the four digesters at the genus level. Methanothrix, a
strict aceticlastic methanogen, was the most abundant methanogenic
player across all bioaugmented reactors when VFAs were below
6000 mg/L, ranging from 70% to 99% at the genus level. Its
dominant role contributed to the efficient conversion of acetate to
subsequently promoted propionate degradation

shows

methane and

Table 2 Index for Shannon, Chao, Ace, and Simpson from
semi-continuous digesters

Reactor Day Shannon Chao Ace Simpson

0 4.052 971.415 990.384 0.054

30 4.383 932.082 942.501 0.030

Rl 40 4.456 971.515 993.826 0.026
60 4.302 935.189 975.288 0.033

80 2.882 798.100 812.214 0.184

0 4.321 856.958 846.852 0.034

30 4.472 993.722 1011.550 0.026

R2 40 4.339 936.102 948.233 0.028
60 1.996 794.039 757.055 0.458

68 1.624 718.414 712.373 0.555

0 4.223 916.525 939.775 0.049

30 4.463 967.842 971.514 0.028

40 4.494 952.450 967.636 0.025

60 4.380 955.783 954.627 0.028

R3 80 3.580 937.858 942.925 0.097
100 4.030 932.552 942.078 0.056

120 4.046 832.960 832.517 0.048

140 4.332 902.206 901.162 0.032

160 4.159 825.308 839.410 0.039

RC 0 3.586 866.805 883.771 0.096
30 3.550 859.103 855.404 0.068

without any VFA accumulation (Figure 5), which is consistent with
a previous study*”’. By comparing the three bioaugmented reactors,
it was found that the duration of stable methane production was
determined by the abundance of introduced Methanothrix. For
example, the longest stable performance, up to 160 d, was observed
in R3 (1x BS 4 times every four HRTs), which received the highest
amount of Methanothrix addition, followed by 72 d in R1 (4x BS
once every four HRTs), and 64 d in R2 (2x BS once every four
HRTs). These results suggest that the amount of Methanothrix
introduced to R1 and R2 was insufficient to avoid the accumulation
of acetate when the OLR was 3.0 g VS/L-d. The dominant role of
Methanothrix in R1 and R2 was gradually replaced by the
hydrogenotrophic methanogen Methanospirillum once total VFAs
exceeded 6000 mg/L. Therefore, 6000 mg/L was concluded to be
the inhibitory threshold level for Methanothrix.
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Note: Principal components (PC) 1 and 2 represented 47.3% and 24.9% of community variation, respectively.

Figure 7 The effect of bioaugmentation on Archaeal community

Methanospirillum was the second most dominant methanogen
when the total VFAs concentration was less than 6000 mg/L in all
reactors. Its relative abundance continued to increase and even
became the most dominant methanogen when total VFAs
concentrations were more than 6000 mg/L in R1, R2, and RC.
Surprisingly, its dominant role was accompanied by a decline in
methane production and an increase in total VFAs, especially in
acetate and propionate, from day 60 in R1, day 60 in R2, and day 30
in RC. This indicated that in the VFA-accumulated reactors,
hydrogenotrophic methanogens played a more important role in
assisting propionate-oxidizing syntropy to overcome thermodynamic
barriers and degrade propionate by scavenging H, rather than
generating methane by oxidizing acetate. The trace proportion of H,
in the anaerobic system led to slow methanogenesis.

Thus, it is necessary to highlight that acetogenesis and
hydrogenotrophic pathways should coexist in high-load anaerobic
reactors. The key to successful bioaugmentation is to regularly
provide mixed functional consortia, i.e.,
acetogenic methanogens and a trace amount of hydrogenotrophic
methanogens.

a large proportion of

4 Conclusion

This study has demonstrated that the introduction of
methanogenic cultures succeeds in starting and maintaining semi-
continuous AD with high-OLR food waste. The results have shown
that bioaugmentation with a high dose of methanogens is essential
for achieving efficient start-up and stable operation of the anaerobic
digester for at least four HRTs. the optimal
bioaugmentation strategy should include a large proportion of

In addition,

acetoclastic methanogens, Methanothrix, and a small proportion of
hydrogenotrophic methanogens, Methanospirillum, to maintain
VFAs under inhibitory levels and achieve high methane yield.
These findings provide a valuable starting point for the application
of bioaugmentation to achieve a rapid and stable start-up of
anaerobic digestion at high organic loading rates. However, the
feasibility of using bioaugmentation in industrial-scale reactors
depends on the input-to-output cost ratio. Therefore, further
research is needed to investigate low-cost bioaugmentation methods
and conduct an economic evaluation in the near future.
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