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Abstract: Edible mushrooms are rich in nutrients; however, harvesting mainly relies on manual labor. Coarse localization of
each mushroom is necessary to enable a robotic arm to accurately pick edible mushrooms. Previous studies used detection
algorithms that did not consider mushroom pixel-level information. When these algorithms are combined with a depth map, the
information is lost. Moreover, in instance segmentation algorithms, convolutional neural network (CNN)-based methods are
lightweight, and the extracted features are not correlated. To guarantee real-time location detection and improve the accuracy of
mushroom segmentation, this study proposed a new spatial-channel transformer network model based on Mask-CNN (SCT-
Mask-RCNN). The fusion of Mask-RCNN with the self-attention mechanism extracts the global correlation outcomes of image
features from the channel and spatial dimensions. Subsequently, Mask-RCNN was used to maintain a lightweight structure and
extract local features using a spatial pooling pyramidal structure to achieve multiscale local feature fusion and improve
detection accuracy. The results showed that the SCT-Mask-RCNN method achieved a segmentation accuracy of 0.750 on
segm_Precision mAP and detection accuracy of 0.638 on Bbox_Precision mAP. Compared to existing methods, the proposed
method improved the accuracy of the evaluation metrics Bbox_Precision_ mAP and segm_Precision_mAP by over 2% and 5%,
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1 Introduction

Edible mushrooms are rich in nutrients and have become the
fifth largest crop in China after food grains, oil crops, fruits, and
vegetables; they play a crucial role in supporting national food
security and ensuring a steady supply of essential agricultural
products'. The 20" Party Congress proposed the construction of a
diversified food supply system, cultivation and growth of edible
mushrooms, and development of straw and forest plantations®”. The
cultivation method of edible mushrooms can be classified into
factory and field planting according to different varieties; the golden
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needle and almond abalone mushrooms are appropriate for factory
production, whereas newly introduced rare species, such as the large
globe and sheep maw mushrooms, are effective incentives for
farmers using industrial mining benefits. These initiatives extend
the industrial chain, promote scientific development, and support
comprehensive planting plans. At present, only large fields can be
used for cultivation. With the rapid development of industries, such
as those associated with large bulbous caps and morel mushrooms,
planting areas are rapidly increasing; however, all these areas are
labor-intensive and inefficient. Therefore, picking robots must be
developed; however, the complex environment of large fields and
objective factors, such as mutual contact and shading between
individual mushrooms, considerably increase the difficulty of
mushroom pose recognition. Therefore, the accurate identification
and determination of the position and pose of mushrooms in natural
scenes is a major technical difficulty for picking robots”. Under the
constraints of objective factors, constructing an effective mushroom
position and pose recognition model can provide an effective
approach for accurate and low-damage mushroom picking.

The typical methods used in agricultural picking image
recognition are conventional machine-learning and deep-learning
methods*. The results obtained by these methods depend on the
advantages Their
recognition effect is unstable and their degree of generalizability is

and disadvantages of feature extraction.

low. Deep-learning methods include target detection and image
segmentation. Target detection can detect a single mushroom body
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in a complex environment. However, in complex scenes, such as
those involving clutter occlusion and mushroom body adhesion,
target detection can easily blur the target frame boundary or cause
miss-detection. Image segmentation aims to divide the image into
several specific regions with unique properties and propose the
target of interest; this operation can effectively improve the
recognition efficiency and accuracy. Segmentation was previously
studied in citrus picking”” and wheat pest recognition!"'"”. These
methods only separate individual objects from the environment and
cannot detect different objects of the same class, whereas, for
mushroom picking, coarse localization of each mushroom is
required. Previous studies have used detection algorithms that did
not consider information at the pixel level of each mushroom,
resulting in information loss when combined with depth maps.

The instance segmentation method not only enables the
recognition and classification of individuals but also enables their
frame-selection which
individual information for aggregated overlapping objects. The

segmentation, can effectively obtain
training samples for image instance segmentation require the use of
pixel-level mask information; hence, a large amount of trainable
data is usually required for the full utilization of the feature
extraction and image analysis capabilities of deep convolutional
neural networks (CNNs). In general, this requirement increases the
cost of manual labeling. Currently, the typical instance
segmentation algorithms are Mask RCNNM™, Mask scoring
RCNNM, SOLOvV2M™, and CNN-based methods. The emergence of
the segment anything model (SAM"®) has significantly improved
segmentation capabilities. However, its large model parameters and
computational demands prevent its usage in edge computing or
embedded hardware. To address agricultural scenarios, this study
focuses on lightweight networks that are easy to deploy. CNN-
based methods can achieve lightweight operations. However, their
extracted features do not fit the global correlation. Moreover, the
existing transformer methods learn global features at the spatial
scale; no global features have yet been learned in the channel
dimension for segmentation tasks in agricultural scenes.

This study proposes a spatial-channel transformer network
based on Mask-RCNN (SCT-Mask-RCNN). Mask-RCNN
integrates a self-attention mechanism to effectively extract
comprehensive similarities among image features across both
channel and spatial dimensions!”'. Subsequently, it is used to
maintain a lightweight structure and extract local features using a
spatial pooling pyramid structure. The model achieves multi-scale
local feature fusion, improves the detection accuracy, and reduces
the number of operations required for the accurate segmentation and
morphological recovery of overlapping mushroom bodies in large
fields, thereby improving the picking success rate and efficiency of
mushroom-picking robots.

The primary contributions of this study can be summarized as
follows:

1) A new mushroom instance segmentation dataset is provided

2) A new model is constructed by combining Mask-RCNN
with a spatial-channel attention module to improve the ability of the
CNN-based model to learn global features

3) The experimental results reveal that the new model improves
the performance compared to that of other models

2 Related work

2.1 Mushroom identification methods
Some mushroom identification methods target individual
species. Chen et al.'’ designed a mushroom-picking robot with

three degrees of freedom, specifically engineered for Agaricus
bisporus. In a contrasting approach, Yang et al.*” employed Mask-
RCNN for the segmentation and localization of A. bisporus. Cong et
al.?" utilized YOLOV3 to design MYOLO, a specialized system for
the detection and identification of mushrooms. Despite these
advancements, the lack of generalization across various mushroom
species and comprehensive case studies to validate their efficacy
exists. Future studies should prioritize addressing these gaps,
fostering a more universal and robust framework for mushroom
identification technologies.
2.2 Instance segmentation algorithms

Instance segmentation, a key direction in machine vision™?),
uses target detection to locate the box of each instance;
subsequently, it segments each box to obtain the mask of instance.
Another scheme involves classification on a pixel-by-pixel basis
using semantic segmentation and instance identification by
clustering. These approaches can be divided into the two-stage
instance, one-stage instance, and query-based instance segmentation
algorithms. Two-stage instance segmentation algorithms include
Mask-RCNN!" Cascade Mask-RCNN® and HTC". One-stage
instance segmentation methods include YOLACT®™, BlendMask™*,
EmbedMask™), and SOLOv2E,
2.3 Transformers

Although current CNN-based models have satisfactorily
performed in the field of agricultural image segmentation, they do
not fulfill the requirements of global feature extraction; in addition,
they are not easy to deploy on mobile terminals. In some scenarios,
image segmentation remains challenging. Considering its
architecture, CNN cannot acquire the feature information of long
sequences satisfactorily. To solve this problem, some studies have
added  different
mechanisms®**, However, these methods still have limitations for
long sequences of information. Recently, the transformer model®"

pyramid modules™" and self-attention

has yielded satisfactory results in the field of natural language
processing®™. Dosovitskiy et al.*” applied the vision transformer
(ViT) model to the visual segmentation of large datasets and
achieved reasonable results. Liu et al.’” proposed the Swin-
transformer model. In contrast to the transformer model, the shift
windows in the Swin-transformer model can significantly reduce
the computation load and achieve more reasonable results on large
datasets. Numerous studies have employed the transformer
model®* and Swin-transformer model** in the field of
agriculture, and some researchers*’ applied a hybrid architecture
model of CNN and transformer to terrace image segmentation; all
approaches yielded reasonable performance.

3 Materials and methods

3.1 Datasets

Ninety-three images were collected in a laboratory setting using
a 640x480 pixels depth camera. All images were manually
annotated by experts. The dataset was split into a training subset
containing 89 images and a test subset with 4 images. Considering
the small number of samples collected, the rotation was applied,
flipping, increasing brightness, reducing brightness, and mosaic
data enhancement methods, as shown in Figure 1.
3.2 SCT-Mask-RCNN overall framework

Figure 2a shows the overall framework of SCT-Mask-RCNN,
and the overall structure, with Mask-RCNN, aims to perform object
detection, instance segmentation, and pixel-level mask prediction
simultaneously. The proposed approach consists of the backbone
network, region proposal network (RPN), ROI align, and two sub-
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networks modules.

Figure 2a shows the overall framework of SCT-Mask-RCNN,
and the overall structure, with Mask-RCNN, aims to perform object
detection, instance segmentation, and pixel-level mask prediction
simultaneously. The proposed approach consists of the backbone
network, region proposal network (RPN), ROI align, and two sub-
networks modules.

The most significant contribution of this study is the backbone
network, which processes the input image and extracts layered
features through a series of operations. Typical choices for previous
backbone networks include ResNet and ResNeXt, which are pre-
trained on large datasets to capture general visual representations.
However, such CNN modules cannot learn global features; in this
study, CNN is improved to a self-attention structure, utilizing a
residual module that combines a channel self-attention block
(ChannelAB) and a spatial self-attention block (SpatialAB) to

enhance the network’s global learning capability. At the end of
backbone, the FPN module is embedded to improve the robustness
of the network.

Original

Horizontal flipping

Vertically flipping

Mosaic

Reduced brightness

Figure 1 Data enhancement methods
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Figure 2 SCT-Mask-RCNN network framework diagram consisting of spatial self-attention block (Spatial AB), channel self-attention block
(ChannelAB), feed-forward network (FFN), feature pyramid networks (FPN), and other major modules

RPN generates regional proposals for potential object instances.
RPN presents candidate bounding boxes along with their objectivity
scores to show the likelihood of containing objects, where the use of
non-maximization suppression techniques can refine the proposals.
As an example, Figure 3 shows the specific structure of the
prediction layer (with a grid size of WxH). The prediction
parameters of each prediction layer include the prediction frame
center coordinates (X, Y), prediction frame length and width (H and
W, respectively), prediction frame confidence level (C), score of
fresh shiitake mushrooms in the prediction frame (Score), and
number of predicted bounding boxes for which each grid is
responsible (B).

ROI align and two sub-networks consist of two branches: the
bounding box regression and classification sub-network and mask
prediction sub-network. The bounding box regression and
classification sub-network refines the bounding box of the RPN’s

output suggestions and classifies the objects in it. The mask
prediction sub-network generates pixel-level segmentation masks
for each classified object.

Prediction Output Paramrters

|X|Y|W|H|c|score|x-

Box Coordinates ~ ConfidenClass
ce level score

Figure 3  Principles of RPN
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Therefore, this study focuses on the backbone network, where
feature extraction determines the generation of pre-selected boxes in
RPN, detection of the bounding box regression and classification
sub-network and mask prediction sub-network. Segmentation.
Moreover, the backbone network accounts for more than 90% of the
overall network. A reasonable feature extractor can considerably
improve the performance of the network.

3.3 Channel self-attention block

Figure 4a shows a channel self-attention block. The red, green,
and blue (RGB) images have three channels (WxH), as shown in
Figure 2a. The features in the WH dimension are associated with
the spatial scene distribution, whereas those in the RGB channel
dimension are associated with the spectral reflectance of the scene.
Determining the global similarity of scenes based on the channel
distribution is a cost-effective and high-yield approach. Because
W=H>»C, capturing spatial-wise interactions is less cost-
effective than modelling channel-wise correlations. However, when
the model reaches a certain scale, a single method cannot continue
to mine image feature information.
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Figure 4 Channel self-attention block and spatial self-attention
block in SCT-Mask-RCNN

Inspired by Cai et al.'] the Channel AB is consistent with
MSAB, as shown in Figure 2c. Channel AB treats each channel
feature map as a token and calculates the self-attention along the
channel dimension. The input X, € R**"* is reshaped into tokens
X e Rm™*¢. Subsequently, X is linearly projected into queryQ,
keyK,valueV € R*"*_ In addition, Q = XW? K = XWX VvV =XW",
where W2, WX, and W' eR>. Subsequently, Q, K, and V are
segmented into N heads along the spectral channel dimension as
follows: Q=[Q,,...,0x], K=[K,,...,Ky], and V=[V,,...,V,\].
Therefore, each head"" and Channel AB can be expressed as

head"" = SoftMax (a'ijK/.T) Vv, (1)

ChannelAB (x) = concat)., (head,) W+ f(V) 2)

where, KjT denotes the transposed matrix of k;,w € R, which are
learnable parameters; and f(-) is the function that generates position
embedding.
3.4 Spatial self-attention block

Figure 4b illustrates the channel self-attention block. A spatial
self-attention block was introduced. The channel self-attention
block primarily focuses on the global correlation of channels and

determines the spatial feature distribution of RGB images. The
feature map of channel self-attention is only 3x3; thus, it involves a
small number of operations; however, it cannot extract detailed
spatial features, resulting in the loss of high-frequency information.
Our proposed spatial self-attention block (spatialB, as illustrated in
Figure 2b) is based on a Swin- transformer model. The input
x e Rwomxe s reshaped into tokens x € R"5 ", where s represents
the window size of each window. Subsequently, x is linearly
projected into query Q, key K, and value V, where W2, WX W' e
R™>*. The ability of the global attention map is enhanced by moving
the window. The space attention operation can be expressed as

. ( OK” )
Attention = SoftMax 1% 3)
Vd
where, 0, K, VeR™ are the query, key, and value matrices,
respectively; d is the query/key dimension; and S* is the number of
patches in a window.
3.5 Loss
During model training, the predicted and true values have an
uncertainty error. The loss function continuously reduces this error
such that the predictions by model are as close as possible to the
corresponding true values. The loss function of SCT-Mask-RCNN
consists of three main parts: bounding box loss, mask loss, and
classification loss, which is expressed as follows:

L = Lo+ Lyoy + Lyast )

where, L,,.q is the most important loss, whose design determines the
quality of segmentation. For each ROI, the mask branch has outputs
of Kxmxm dimensions which encodes K masks of size mxm, and
each ROI has K categories. Per-pixel sigmoid was used, and L,
was defined as the average binary cross-entropy loss, which can be
expressed as follows:

k m2
Ly =$ D (1) [~yxlog(sigmoid (x)) -
i 1

(1-y)xlog (1 - sigmoid (x)) | Q)

where, 1* denotes when the k* channel corresponds to the true
category of target, and 0 otherwise; y denotes the label value of the
mask at the current position; x denotes the output value at the
current position, and sigmoid(x) denotes the result of the output x
transformed by the sigmoid function.

Moreover, L,; is the classification loss, which can be expressed as

Z log p1 pit+ 1 —pf) ( —Pi)} (6)

where, N, is the number of anchors and p; is the probability that an
anchor is predicted to be a target.

Lch PisD

The regression loss box can be expressed as
1
L. = /lm Zp,.R (t-1) 7

where, # is a vector denoting the offset of the anchor’s predicted
output in the RPN stage. Moreover, x and y, w, and & denote the
center coordinates, width, and height of the anchor, respectively; t,*
is a vector with the same dimensions as #;, denoting the offset of the
anchor’s output in the RPN stage with respect to gt. R(x) is a
smooth L1 function, which is expressed as follows:

1 . 1
0.5¢°x —, if xl< —
R(x)= o o ()
|x|—0.5, otherwise
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4 Experimental work

4.1 Experimental settings

All methods were trained from scratch and did not use pre-
training weights nor were they fine-tuned based on other models to
impartially evaluate the obtained results. For the other SOTA
models, we used the MMSegmentation toolbox of MMLab for
training.
4.1.1 Model evaluation

In this study, to verify the accuracy of the proposed method and
other SOTA methods, mushroom precision (P), recall (R), average
precision (AP), and mAP were used as evaluation indicators. The
indicators are calculated as follows:

TP
P=Tprrp ©)
TP
R=TP+FN (10)
1
AP = foP(R)dR (11)

where, TP is the number of fresh shiitake mushrooms detected
correctly, FP is the number of fresh shiitake mushrooms detected
incorrectly, and FN is the number of fresh shiitake mushrooms
missed. For each category in the target detection, a P-R curve can
be plotted based on accuracy and recall.
4.1.2  Evaluation metrics

The key evaluation metrics are bbox_ Precision mAP and
segm_Precision. mAP, which are defined in an Intersection over
Union (IOU) range of 0.5-0.95, and AP is calculated every
0.05xI0U and then averaged. Moreover, bbox_mAP 50 and
seg mAP 50 are the AP values when 10U = 0.5, bbox mAP_ 75
and seg mAP 75 are the AP values when IOU = 0.75, and

bbox_mAP 75 and seg_ mAP_75 are the AP values when IOU =
0.75. bbox_mAP_s/m/l and seg mAP s/m/l are the AP values of
small-, medium-, and large-size objects, respectively, where small
indicates that the area of the object is less than 32%32, medium
indicates that the area is between 32x32 and 96x96, and large
indicates that the area is larger than 96x96.
4.2 Implementation details

The proposed network was implemented using PyTorch, and
the proposed SCT-Mask-RCNN was trained using a personal
computer with the hardware and software specifications as
presented in Table 1. We adopted an Stochastic Gradient Descent
(SGD) optimizer (Ir = 0.02, momentum = 0.9, and weight decay =
0.0001) for 100 epochs.

Table 1 Hardware and software configuration

Hardware or Software Configuration
CPU Intel 19-10700H
GPU Nvida GeForce RTX 3090 24 G
Operating system Ubuntu 20.04
SSD 1T
Development environment CUDA 11.4

5 Results and discussion

5.1 Experimental results

The comparison was made between bbox mAP, seg mAP,
bbox mAP 50, and seg mAP 50, bbox mAP 75, seg mAP 75,
bbox mAP_s/m/l, and seg mAP s/m/l of our SCT-Mask-RCNN
with several SOTA instance segmentation algorithms, including
Mask renn with resnet 50, Mask renn with resnet 101, yolact,
queryinst, Point rend, and HTC. Table 2 lists the experimental
results.

Table 2 Comparison of metrics outcomes obtained by the proposed method and SOTA methods

Comparison of detection metrics outcomes obtained by the proposed method and SOTA methods

Mask_rcnn Mask_rcnn_

Mask_rcnn with spatial

Tables metrics resnet_SO[lsT resnet_101™ Yolact™! Queryinst™ Point_rend” HTC™ channel attention [ours]
bbox_Precision_ mAP 0.374 0.588 0.242 0.250 0.443 0.470 0.638
bbox_Precision_mAP_50 0.705 0.964 0.765 0.421 0.905 0.897 0.951
bbox_Precision_mAP_75 0.240 0.551 0.046 0.333 0.419 0.403 0.631
bbox_Precision_mAP_s 0.071 0.460 0.230 0.010 0.320 0.204 0.462
bbox_Precision_mAP_m 0.179 0.643 0.147 0.022 0.429 0.396 0.618
bbox_Precision_mAP_] 0.463 0.715 0.343 0.276 0.589 0.587 0.692
bbox_Recall mAP 0.497 0.677 0.320 0.367 0.546 0.540 0.673
bbox_Recall mAP_s 0.200 0.552 0.372 0.056 0.476 0.272 0.544
bbox_Recall mAP_m 0.310 0.678 0.268 0.149 0.527 0.498 0.673
bbox_Recall mAP_1| 0.630 0.790 0.397 0.460 0.653 0.647 0.750

Comparison of segmentation metrics outcomes obtained by the proposed method and SOTA methods
segm_Precision_mAP 0.451 0.731 0.356 0.205 0.568 0.520 0.750
segm_Precision._ mAP_50 0.691 0.965 0.526 0.407 0.875 0.864 0.957
segm_Precision_mAP_75 0.528 0.868 0.503 0.087 0.614 0.591 0.853
segm_Precision_mAP_s 0.067 0.512 0.008 0.006 0.282 0.155 0.512
segm_Precision mAP_m 0.190 0.689 0.014 0.020 0.336 0.336 0.705
segm_Precision_mAP_1| 0.501 0.840 0.463 0.225 0.651 0.620 0.760
segm_Recall mAP 0.549 0.783 0.376 0.352 0.653 0.558 0.785
segm_Recall mAP_s 0.236 0.616 0.036 0.060 0.420 0.236 0.604
segm_Recall mAP_m 0.316 0.719 0.041 0.113 0.443 0.383 0.740
segm_Recall mAP_| 0.590 0.873 0.480 0.400 0.683 0.633 0.803

Figure 5 shows a comparison between the segmentation results
obtained using the SCT-Mask-RCNN and other SOTA methods.

The results in Table 2 show that the proposed SCT method

outperforms Mask rcnn  with  resnet_50, Mask renn  with
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resnet_101, yolact, queryinst, Point rend, and HTC, improved by
26.4%, 5.0%, 39.6%, 38.8%, 19.5%, 16.8%, and 29.9%, 1.9%,
39.4%, 54.5%, 18.2%, and 23.0%, respectively.

Mask_rcnn_resne Mask_rcnn_resne
t 50

Truth htc ¢ 101

The wvisual results show that the proposed method is
significantly more advantageous than other methods for
segmentations of small- and medium-size objects.

Point_rend Ours

queryinst yolact

Figure 5 Visual comparisons of the proposed method with SOTA methods

5.2 Analysis

Unlike fruits, such as apples, strawberries, and kiwi fruit,
mushrooms differ not only by color, size, and shape but also by
growing periods for the same category. The target recognition frame
and segmentation effect of the proposed method with those of the
other methods are compared to further clarify the effectiveness of
the proposed method; Figure 6 shows the results. The proposed
method outperforms the other methods in terms of mAP metrics of
Bbox (Figure 6a), mAP precision of Bbox (Figure 6¢), and mAP
metrics of segmentation (Figures 6d). Figure 6b shows the Recall of
large Bbox metrics. Figures 6e and 6f show that the SCT-Mask-
RCNN network outperforms other methods for medium-size
objects, particularly mask rcnn_resnet 101; however, the proposed

method has less depth, and thus it is slightly inferior to the deeper
network mask rcnn_resnet 101 for large-size objects.

The number of parameters of the proposed and other SOTA
methods was obtained to further evaluate the effectiveness of the
proposed method, as presented in Table 3. The results show that
SCT-Mask-RCNN  outperforms the SOTA method in both
Bbox_Precision mAP and segm Precision mAP, and uses
approximately 76.6% less parameters than Mask_rcnn_resnet_101.
In addition, the Bbox_Precision mAP and segm_Precision_ mAP
metrics of the proposed method compared to those of the
Point_rend method were improved by 19.5% and 18.2%,
respectively, even though SCT-Mask-RCNN used 2.98 M more
parameters.

Table 3 Parameters of SOTA methods and the proposed method

Methods Mask_renn_resnet 50" Mask_rcnn_resnet 101" Yolact®” Queryinst*! Point_rend*’ HTC" Mask_rcnn with spatial channel attention (This study)
Params 25.56 M 4498 M 49.12M  96.97M 3463M  4572M 37.61 M
5.3 Ablation experiments Spatial AB  exhibits the highest contribution, where the
Ablation experiments are usually performed on complex neural segm_Precision mAP  metric improves by 0.288  over

networks to explore the effects of network-specific substructures or
training strategies and parameters on the model generation; they
provide key guidelines for the structural design of neural
networks“’. To evaluate the effectiveness and feasibility of the
proposed SCT-Mask-RCNN lightweight model, the performance of
the ChannelAB, SpatialAB, and FFN modules were verified
experimentally. As the SCT-Mask-RCNN model is an improved
version of Mask rcnn, the head of the overall network remains
intact; hence, Mask rcnn resnet 50 was
experiment comparisons.

Table 4 shows the results of the ablation experiments
performed using the test set on networks with different modules
removed. The results show that ChannelAB, Spatial AB, and FFN
positively contribute to enhance the network. The module with

used for ablation

Mask renn_resnet 50 and uses 11.57 M more parameters.
ChannelAB boosts the network better, with an improvement of
0.144 in the segm_Precision_ mAP metric and using only 4.02 more
parameters. Finally, the FFN module enhances the network, where

segm_Precision mAP is improved by approximately 0.11.

Table 4 Ablation experiments of different modules in
Mask_renn with spatial channel attention

Base-line With With ~ With segm_Precision_  Total
ChannelAB SpatialAB FFN mAP parameters
V 3 3 0.750 37.61 M
Mask_rcnn with J N « 0739 3713 M
channel attention : ’
X X 0.595 29.58 M
Mask_renn_ x x x 0451 2556 M
resnet_50
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Figure 6 Detection results using the proposed and other SOTA methods considering different metrics

coarse localization of edible mushrooms and provided a new
mushroom instance segmentation dataset. To improve the accuracy
This study investigated instance segmentation techniques for of instance segmentation on a mushroom segmentation dataset, a

6 Conclusions
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new spatial-channel transformer network based on a Mask-RCNN
network (SCT-Mask-RCNN) was proposed. SCT-Mask-RCNN was
constructed by combining Mask-RCNN with a spatial-channel
attention module to improve the ability of the CNN-based model to
learn global features. Experiments on the new dataset revealed that
the proposed method exhibited a higher performance than that of
other methods. The SCT-Mask-RCNN method yielded a
segmentation accuracy of 0.750 on segm Precision mAP and
detection accuracy of 0.638 on Bbox_Precision_ mAP. Thus, the
proposed method yielded improvements exceeding 2% and 5% than
those achieved using other methods, respectively.

The SCT-Mask-RCNN network can efficiently coarsely
localize mushrooms, improve the accuracy of previous detection
algorithms, and increase the efficiency of mushroom-picking robots.
In future studies, the automation of mushroom picking will be
attempted by deploying a SCT-Mask-RCNN network using a two-
dimensional calibration algorithm.
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