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Abstract: Utilizing the spatiotemporal features contained in extensive trajectory data for identifying operation modes of
agricultural machinery is an important basis task for subsequent agricultural machinery trajectory research. In the present study,
to effectively identify agricultural machinery operation mode, a feature deformation network with multi-range feature
enhancement was proposed. First, a multi-range feature enhancement module was developed to fully explore the feature
distribution of agricultural machinery trajectory data. Second, to further enrich the representation of trajectories, a feature
deformation module was proposed that can map trajectory points to high-dimensional space to form feature maps. Then,
EfficientNet-BO was used to extract features of different scales and depths from the feature map, select features highly relevant
to the results, and finally accurately predict the mode of each trajectory point. To validate the effectiveness of the proposed
method, experiments were conducted to compare the results with those of other methods on a dataset of real agricultural
trajectories. On the corn and wheat harvester trajectory datasets, the model achieved accuracies of 96.88% and 96.68%, as well
as F1 scores of 93.54% and 94.19%, exhibiting improvements of 8.35% and 9.08% in accuracy and 20.99% and 20.04% in F1
score compared with the current state-of-the-art method.
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1 Introduction

In recent years, the process of agricultural modernization in
China has been developing rapidly, and agricultural machinery has
been adopted for large-scale agricultural operations, thus generating
a large amount of trajectory data!?. The trajectory is a time-ordered
coordinate sequence that records agricultural machinery during the
process of driving, reflecting the spatial changes in the machinery
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over a period of time; this sequence is used to depict the movement
trajectory”. There are many ways to collect trajectory data, and one
of the main ways is to utilize the Global Navigation Satellite System
(GNSS) for data collection’. GNSSs are navigation and positioning
systems that provide users with two-dimensional coordinates and
temporal and velocity information about an object at any time and
placef. After a large amount of data has been collected, further
analyzing and applying these trajectory data is more important in
the actual production chain. Its wide range of application areas
includes but is not limited to recognizing the cross-area operational
behavior of agricultural machinery®”, planning the operation path of
agricultural machinery™'”, recognizing the companion behavior of
agricultural machinery, automated navigation of agricultural

machinery"""”,  agricultural road network construction'*",
agricultural big data precision analysis!'*'"), operation efficiency
evaluation of agricultural machinery®"), and conducting in-depth
studies on the quantitative relationship between the operational
efficiency of agricultural machinery and weather™”.

To implement effective analysis and mining of agricultural
machinery trajectory data, a key prerequisite task is to first
understand the driving scene and activity type related to each point
in the trajectory of agricultural machinery, which is also called field-
road classification. Field-road classification aims at semantically
the trajectory data of

agricultural machinery when it operates and recognizing its

segmenting trajectories by learning
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operation modes. The operation modes include fields and roads.
When working in the field, the trajectory points of agricultural
machinery are semantically labelled “field points”, while when
driving on a road, they are labelled “road points”. This semantic
segmentation method helps to understand and distinguish the
trajectory characteristics of agricultural machinery in different
scenarios more accurately and provides a strong theoretical basis for
the subsequent analysis of agricultural machinery behavior.

At present, semantic segmentation of trajectories using artificial
intelligence technology has become a popular research topic. It can
not only more accurately identify the behavior of agricultural
machinery in field operations and road driving but also provide
deeper semantic labels to the trajectory data, thus making the
subsequent analysis of the data more detailed and targeted. Chen et
al.”"! proposed a DBSCAN field-road classification model based on
direction distribution (BDFRTS). This method introduces inference
rules for speed and direction; for example, the driving direction of
agricultural machinery is mostly parallel, and the driving speed is
slower when the machinery is working in the field. In contrast,
when the machinery is driving on the road, the classification results
of the unsupervised clustering method DBSCAN are corrected. In
addition, Poteko et al.’ extracted statistical parameters based on
individual points and their temporal neighbors as features that were
subsequently fed into a decision tree (DT) for learning to achieve
field-road classification; Xiao et al.”*! proposed an XGBoost field-
road classification model with a time window feature extraction
operators to extract features and a recursive feature elimination
algorithm to eliminate redundant features (DR-XGBoost). The
above methods achieve field-road classification by building
machine-learning models or combining logical assumptions for
inference. Although these methods have achieved acceptable
results, they still have drawbacks. The BDFRTS methods use only
latitude and longitude as inputs, which makes it difficult to
comprehensively capture trajectory features, and the model depends
on parameters that need to be constantly adjusted to achieve better
performance. The DT models do not adequately mine the intrinsic
information of the data and focus only on the features of individual
trajectory points without acknowledging the connections between
trajectory points. Although the DR-XGBoost model improves
feature extraction by taking into account the connections between
points, it still utilizes discrete features, which necessitates the
discretization of continuous features. However, this discretization
process can potentially result in information loss.

Recently, deep learning-based methods have been proposed to
further facilitate field road classification tasks. Deep learning
methods mainly involve setting up the deep structure of complex
models, collecting a large amount of data, and transforming the data
(including spatiotemporal relationship graphs and pixel images) so
that the model can automatically extract important information from
the data and thus better understand and differentiate between the
essential features of different trajectory data for classification. Chen
et al.” utilized the spatiotemporal relationship between each point
and its neighboring points to construct spatiotemporal graphs, thus
obtaining a rich representation of the features for each GNSS point
and then applying a graph convolution neural network (GCN) to
propagate the features between graph nodes, thus aggregating the
point information in the trajectory to achieve -classification.
Furthermore, Zhang et al.”' proposed transforming trajectory data
into images and applying an object detection model to detect objects
in 1images; additionally, applying the traditional DBSCAN
clustering method (DBSCAN-+object detection); finally combining

two classification results using the Davis-Boldin Index (DBI). Chen
et al.® also extracted two types of input feature vectors, statistical
feature vectors, and visual feature vectors, to represent a GNSS
trajectory point and then integrated the input features using a
BiLSTM network to ultimately achieve classification for each
GNSS point (BiLSTM). Zhai et al.?” proposed a generative
adversarial network-bidirectional long short-term memory network
(GAN-BiLSTM) field-road classification model. They wused
Generative Adversarial Networks (GAN) for data augmentation to
obtain a balanced dataset, which was subsequently fed into
BiLSTM with an attention mechanism and focal loss as the loss
function for classification. The deep learning methods described
above further extract trajectory features and achieve better
performance. However, a spatiotemporal graph needs to be
constructed, which consumes a large amount of computational
resources; the results of the DBSCAN+object detection model and
BILSTM model rely on the selection of the mapping model that
transforms the data into images, and the mapping process introduces
biases through operations, which prevent image data from
accurately expressing the original trajectory information.

Although these studies have made promising progress in model
design and motion information extraction and all of them have
improved the accuracy of field-road classification to a certain
extent, shortcomings such as an imbalanced distribution of raw data,
lack of overall motion information, and high computational loss
still exist.

To overcome the limitations mentioned above, this study
proposed a feature deformation network with multi-range feature
enhancement for agricultural machinery operation mode
identification (FDRNet). First, to fully explore the feature
distribution of agricultural machinery trajectory data, a multi-range
feature enhancement module was introduced. The raw data were
processed using short-range and long-range feature extraction
methods to capture the spatial structure, movement trends, and
boundary details of agricultural machinery trajectories. This
approach accurately describes the movement patterns and behaviors
of agricultural machinery, thereby enhancing the ability of the
model to represent trajectory data. Second, the feature deformation
method was proposed (FD). To further enrich feature representation,
FD first trains trajectory features in a high-dimensional space,
expanding the data dimensionality. FD then maps the feature
elements of each trajectory point into a feature map. This approach
transforms the field road trajectory classification problem into an
image classification problem. This method is simple and efficient
and provides a new paradigm for field road trajectory classification
tasks. Finally, to extract features of different scales and depths from
trajectories and filter out features highly relevant to the results, this
study adopted EfficientNet-BO as the backbone network.
EfficientNets are a series of composite scaling networks designed to
achieve better performance than traditional networks with lower
model sizes and computational resources®. The method involves
using a set of scaling coefficients to uniformly adjust the network’s
depth, width, and resolution. EfficientNet-BO is the baseline model
in the EfficientNet series. This network effectively captures the
spatial information of trajectory points and relationships between
different feature channels in a short time. The weight of each
channel is dynamically adjusted based on this information.
Therefore, this enables the network to focus more on important
features and improves the model’s perception of trajectory features.
EfficientNet-BO extracts rich features from multiple perspectives to
accurately predict the activities of each trajectory point, such as
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“field” and “road.” To validate the effectiveness of the proposed
approach, experiments were conducted on datasets of wheat and
corn harvester trajectories. The results demonstrate that our method
achieves the best outcomes in field road trajectory classification
tasks. The main contributions of this study are as follows:

1) Introducing a multi-range feature enhancement method to
uncover feature information within agricultural machinery
trajectories. This captures changes in trajectory features and
movement trends of machinery, constructing spatiotemporal
relationship features;

2) A trajectory feature deformation method is proposed.
Initially, trajectory dimensionality is increased through a linear
mapping layer, followed by the deformation of the trajectory
temporal features into the feature maps. The field-road trajectory
task thereby image
classification task. This deformation overcomes the defect that
traditional CNN-based network can not deal with trajectories

classification is transformed into an

directly, providing a universal image model solution for the field-
road trajectory classification task.

Original trajectory

3) The network EfficientNet-BO from the field of image
classification was chosen as the backbone network. This approach
captures both local and global information on trajectory features,
identifying crucial features. This network extracts diverse features
at different scales and depths from trajectory data, allowing it to
precisely comprehend the distribution of trajectory features. As a
result, it can more effectively recognize agricultural machinery
operation mode.

2 Materials and methods

2.1 Overview

To overcome the limitations of the current models used for
field-road trajectory classification, this study developed a network
suitable for trajectory feature extraction of agricultural machinery
called FDRNet. This section will elaborate on the principle of the
FDRNet algorithm. It is composed of three key components: feature
augmentation, trajectory feature map creation, and a model for
classifying field road trajectories. The specific algorithm flow chart
is shown in Figure 1.
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Figure 1

2.2 Multi-range feature enhancement

This section introduces a multi-range feature enhancement
method. It first utilizes a short-range feature extraction method
(SRF) to capture the relationships between different features of the
same trajectory point. Then, a long-range feature extraction method
(LRF) is used to identify changes in the feature distribution of
different trajectory points.

Existing field-road trajectory classification models mostly
exploit the initial features of trajectories, such as longitude, latitude,
speed, and direction. However, the information embedded in
trajectories is not sufficiently mined. Based on the above issue, the
SRF was presented, where the initial features of the trajectory are

The pipeline of the proposed FDRNet

computed by a kinematic formula to obtain the short-range features
of the trajectory. Assuming a set of n trajectory points is represented
as T={(longitude,, latitude,, time,, speed;, direction,, lable,)| I=1, 2,
3, ..., n} where longitude;, latitude; time;, speed;, direction,, label;
are the longitude, latitude, time, speed, direction, and label of the ith
trajectory point, respectively. Here, label,€ {0, 1}, where “0”

“1”

represents a road point and represents a field point. In this
study, the initial features include the longitude, latitude, speed, and
direction from the set 7. Then, the speed difference was calculated,
acceleration, direction difference, angular velocity, angular velocity
difference, and angular acceleration as short-range features of the

ith trajectory point (Equations (1)-(6)).
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speedDiff, = speed, — speed,_, (1)
dDiff,
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time; — time;_,
Ang, = direction, —direction; 3)
Ang,
Vel = — 08 4
ang Vel time; — time;_, )
angVeldiff, = angVel, —angVel,_, &)
Veldiff,
angAce, = ~nEVEldiff, ©
time,; — time;_;

where, speedDiff;, Acc;, Ang;, angVel;,, angVeldiff,, and angAcc;
represent the speed difference, acceleration, direction difference,

angular velocity, angular velocity difference, and angular
acceleration of the ith point, respectively.
There are significant differences in the movement

characteristics of agricultural machinery in the field and on the road.
Normally, when working in fields, agricultural machinery tends to
move at an approximately constant low speed. Consequently, during
certain continuous time intervals, the average, median, and standard
deviation of the acceleration of trajectory points are approximately
zero. On the other hand, when agricultural machinery travels on
roads, its speed is higher than that in the field, and it often needs to
perform actions such as acceleration, braking, and turning. This
leads to considerable variations in the speed, acceleration, angular
difference, angular velocity, and angular acceleration at different
time points. Therefore, according to the distinct distributions of
trajectory features in fields and on roads, this paper proposes the
LRF. Within a sliding window 7, the LRF calculates the mean,
median, standard deviation, maximum, minimum, skewness, and
kurtosis of the above short-range features for the trajectory point
point; as long-range features. Here, the window size n represents the
number of adjacent points used for feature calculation around the
current trajectory point point, To capture feature changes within
short and long distances, the sliding window sizes were empirically
set to 5 and 20. Skewness and kurtosis were used to measure the
asymmetry and steepness of the feature distribution, as shown in
Equations (7) and (8).
1 - Xi —H :
=327 ] @

i=

n

k=130 (2)] ®

i=

where, S, K, u, and o represent the skewness, kurtosis, mean, and
standard deviation, respectively.

On the basis of the initial features of agricultural machinery
trajectories, this study initially extracts short-range features from the
instantaneous state of the machinery. Long-range features were
subsequently derived by exploring changes in agricultural
machinery states over a period of time. This process establishes
correlations between different trajectory points, enhancing the
feature representation of agricultural machinery trajectories.

2.3 Feature deformation network

Current research on field-road trajectory classification can be
broadly divided into four types: density clustering-based field-road
trajectory classification models, decision tree-based field-road
trajectory classification models, image processing-based field-road

trajectory classification models, and graph convolutional network-
based field-road trajectory classification models. However, each
type of model has its own limitations. For instance, the density
clustering-based field-road trajectory classification model requires a
large amount of manual parameter tuning and exhibits limitations in
generalization; moreover, this model lacks precision at the edges of
trajectories (where field trajectory points meet road trajectory
points). The decision tree-based field-road trajectory classification
model overlooks the correlation between trajectory features and is
not suitable for handling multidimensional trajectory data
containing both continuous and discrete features. The image
processing-based field-road trajectory classification model risks
information loss during data conversion and struggles with
parameters such as pixel size and image size. Finally, the GCN-
based field-road trajectory classification model has a large number
of parameters and requires long training times. When constructing
point relationships, only local spatiotemporal relationships are
considered, and the process consumes a significant amount of
hardware resources. To overcome the aforementioned limitations,
this paper proposes a novel pattern recognition method tailored for
agricultural machinery. It employs a feature deformation network to
handle the field-road trajectory classification task. Specifically, in
this section, we first use a trainable linear projection to map the
enhanced features to the required dimensions. Subsequently, GNSS
points are automatically generated into “feature maps” via a feature
deformation method. Next, the EfficientNet-B0 image classification
model is utilized as the backbone network to extract features at
different levels from the trajectory feature maps. Finally, based on
the extracted features, a linear classifier is employed to predict the
categories (“field” or “road”) of each point.
2.3.1 Trajectory feature image generation

Due to the limited number of enhanced features, the network’s
depth was restricted. Therefore, the model cannot effectively learn
the feature distribution of the trajectory. Moreover, sequential
trajectory data cannot be directly input into an image classification
network. To overcome these challenges, a feature deformation
network was presented. The network first introduces a trainable
linear projection layer. This layer, through a fully connected
network, maps the dimensionality of the enhanced features to a
more expansive space. Subsequently, a feature deformation method
was defined for expressing trajectory data. This deformation maps
the feature vectors of GNSS trajectories to feature images. Each
element in the feature vector corresponds one-to-one with a pixel in
the feature image. Notably, each point in the GNSS trajectory
represents an independent feature image. This method effectively
resolves the issue of inputting trajectory data into the model.

There is a set of trajectory data P=Ds Do Dir oos Do
7, € RY, where m is the number of trajectory points and d is the
input feature dimension for each trajectory point. In this paper, after
the linear projection layer, a d-dimensional feature vector is mapped
to D dimensions. The output of this projection was referred to as the
feature embedding. The 1xD-dimensional feature embedding F={f|,
Jo fas s fp} of each trajectory point 7, is resized into a feature
matrix F'€ R, where NxN=D. The overall process is illustrated in
Figure 2. In this way, the trajectory points are deformed into a
“feature map” that the image classification model can process
directly. Here, the ddimensional feature vector corresponds to the
features extracted in Section 2.2, and A is the number of pixels in
the feature image. Compared to existing methods of rasterizing
image conversion, the advantage of the proposed method lies in its
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abundance of features and simplicity of implementation, which can
effectively enhance the classification performance of the model.

N

Trajectory features

Trajectory feature map

Figure 2 The deformation of the trajectory feature

2.3.2 Network structure
Through muti-range

deformation, each agricultural machinery trajectory point was

represented as a feature map rich in spatial information. To further

feature enhancement and feature

capture trajectory features at various scales and depths and to select
features highly relevant to the outcome, this study employed
EfficientNet-B0 as the backbone network. EfficientNet-B0 scales its
depth, width, and resolution proportionally. Hence, this approach
can capture agricultural machinery trajectory features at different
levels of abstraction and granularity, achieving effective multiscale
feature extraction. Additionally, this network can efficiently capture
the spatial information of trajectory points and the relationships
between different trajectory feature channels in a short period of
time. By adjusting the weight of each channel, trajectory features
that are highly correlated with the outcome were selected.
Therefore, this model not only enhances the ability of the model to
recognize patterns and details in trajectory data but also meets the
real-time requirements of field and road trajectory classification
tasks.

The network architecture of EfficientNet-BO is listed in Table 1
and Figure 3. The network is divided into 9 stages, where the first
stage consists of a regular convolutional layer with a 3x3 kernel size

Table 1 EfficientNet-B0 baseline network

Stage i Operator i’\, Resolution i]\l X VV\I #Channels a #Layers l:
1 Conv 3x3 224x224 32 1
2 MBConvl, k3x3 112x112 16 1
3 MBConv6, k3x3 112x112 24 2
4 MBConv6, k5%5 56x56 40 2
5 MBConv6, k3x3 28x28 80 3
6 MBConv6, k5%5 14x14 112 3
7 MBConv6, k5%5 14x14 192 4
8 MBConv6, k3x3 7x7 320 1
9  Conv 1x1&Pooling&FC 7x7 1280 1
- |N——*WNNNNN———>FFFFF—
— Sl
Trajectory
feature maps
M Conv 3x3 MBConvl, 3x3 MBConv6, 3x3

MBConv6, 5%5 Conv 1x1&Pooling&FC M Softmax

Figure 3 The network structure of EfficientNet-B0

Feature map

BN

and a stride of 2 (including batch normalization (BN) and an
activation function (Swish)). Stages 2 to 8 comprise repeated stacks
of MBConv structures and Layers 7. indicates the number of times
the MBConv structure is repeated in that stage. Stage 9 consists of a
regular 1x1 convolutional layer (including BN and Swish), an
average pooling layer, and a fully connected layer (FC). In Table 1,
MBConvn denotes the multiplier factor n, which determines how
the first 1x1 convolutional layer within the MBConv expands the
input trajectory feature matrix’s channels by n times. In
EfficientNet-BO, n is assigned a value of 1 or 6. Additionally, A3x3
or k5x5 represents the kernel size used in the depthwise convolution
within the MBConv. The resolution indicates the size of the input
trajectory feature matrix <ﬁ,w> Channels a represents the
number of output trajectory feature matrix channels after passing
through that stage.

MBConv, originating from the InvertedResidualBlock of the
MobileNetV3 network, differs in EfficientNet’s MBConv, which
employs the Swish activation function, along with the inclusion of
the Squeeze-and-Excitation (SE) module in each MBConv. The
structure of the MBConv network is illustrated in Figure 4. Each
MBConv consists of a 1x1 regular convolution (including BN and
Swish), a kxk Depthwise Convolution (including BN and Swish), an
SE module, a 1x1 regular convolution (including BN), and a
Dropout layer. The value of & is either 3 or 5. In contrast to regular
convolutions, Depthwise Convolution calculates with a convolution
kernel only for a single channel of input trajectory features,
significantly reducing the parameter count. Additionally, MBConv
employs residual connections, where the input is directly added to
the output, forming a residual block. This helps prevent gradient
vanishing issues, making the network easier to train. Swish
introduces non-linear factors, aiding the model in learning complex
non-linear relationships and trajectory feature representations.
Moreover, Swish includes a learnable parameter f, allowing the
activation function’s shape to adapt based on the trajectory data
distribution. This adaptability contributes to enhancing the network’
s generalization ability across different data distributions. Its
formula is depicted in Equation (9). When p=0, the activation
function becomes a linear function f{x)=x/2; when pf=co, the
activation function becomes the ReLU function. Swish has only a
lower bound, ensuring no gradient saturation during training,
providing stronger regularization effects. Furthermore, its
continuous differentiability facilitates easier optimization of
network parameters during backpropagation.

f(x) =x-sigmoid(Bx) 9

The SE module is essentially a channel attention mechanism
comprising Squeeze, Excitation, and Scale stages. In the Squeeze
stage, the SE module reduces the dimensions of each channel
through Global Average Pooling (AvgPooling). This operation
averages all elements in each channel, compressing the channel
information into a single value. This value represents the global
importance of that channel. In the excitation stage, 2 fully
connected layers are used to learn the weights of each channel.

New feature map

BN
Conv | Swish [Depthwise Conv] Swish Tonv_] BN
| | 1x1sl | kxk,s1/s2 SE 1x1,s1 Dropout

Figure 4 The structure of the MBConv
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These weights, known as excitation factors, measure the importance
of each channel globally. Finally, in the scale stage, the original
trajectory feature map is reweighted channel-wise by multiplying it
with the learned excitation factors. This operation allows the
network to adaptively emphasize important channels during
training, thereby improving overall performance. The network
architecture is shown in Figure 5. The main goal of the SE module
is to learn channel relationships in the input trajectory feature map
and dynamically adjust the weight of each channel accordingly.
Therefore, the SE module enables the network to focus more on
crucial features, enhancing the model’s perception of trajectory
features.

Feature map NevY feature map

Pan)
N

FC1 -I

Figure 5 The structure of the SE

Swish Si id
Wis| I FC2 } 12Mol

[AngoolingI-—-l

The EfficientNet-BO network ultimately produces a global
average feature. Next, the classification layer uses the softmax
function to transform the trajectory features extracted by
EfficientNet-BO into categorical scores. This helps determine
whether a trajectory point belongs to a field or a road, completing
the task of classifying field-road trajectories.

After the augmented features are mapped into high-dimensional
space, trajectory points are transformed into feature images using a
trajectory representation paradigm as the model input. EfficientNet-
BO not only extracts local correlation information of adjacent
elements in the trajectory point feature vector but also captures
global correlation information of distant features within the feature
vector. Additionally, based on the characteristics of MBConv,
EfficientNet-BO can effectively capture the spatial information of
trajectory points and channel relationships of feature maps. This
method reduces the number of parameters and lowers the
computational complexity while extracting implicit features of
agricultural machinery trajectories from multiple dimensions.
Therefore, this approach can efficiently achieve field-road trajectory
classification.

3 Results and discussion

3.1 Experimental setup

The Key Laboratory of Agricultural Machinery Operation
Monitoring and Big Data Application, Ministry of Agriculture and
Rural Affairs, People’s Republic of China, provided the Grain
Harvester Trajectory dataset for the study. To evaluate the model’s
performance, two sets of agricultural machinery trajectory datasets
were selected with different crop types, trajectory numbers,
operation times, geographical locations, sampling frequencies, and
GNSS receivers. These datasets were named the “Maize Harvester
Trajectory Dataset” and the “Wheat Harvester Trajectory Dataset”,
respectively, based on crop type. The detailed information is
presented in Table 2. The initial features of each trajectory point
include coordinates (longitude and latitude, WGS84), time (YYYY:
MM:DD - hh:mm:ss), speed (m/s), direction (°), height (m), and
labels. The labels represent manually annotated trajectory point
categories (“Field” or “Road”). The data cleaning on each GNSS

trajectory dataset were performed, including noise point smoothing
and duplicate point removal, following the approach®’. Afterward,
the datasets were randomly divided into training and testing sets at a
ratio of 8:2. All the experimental data used in this study are
available at https:/github.com/Agribigdata/dataset code. For the
experiments, Python, PyTorch, an NVIDIA Tesla V100 GPU, and
an Intel(R) Xeon(R) Gold 6226R CPU @ 2.90 GHz were employed.
The hardware environment for the experiments is detailed in
Table 3.

Table 2 Information of GNSS trajectory datasets

Wheat Harvester Trajectory

Parameters Maize Harvester Trajectory Dataset Dataset
Number of 90 17
trajectories
Number of 828 891 932 493
points
Acquisition 2019.9.15-2019.10.15 2021.6.1-2021.6.30
period
Henan Province, Anhui Province, leyang City, Shangqlu
. . . City, Zhumadian City,
. . Shandong Province, Hubei Province, , . . s
Geographical = ... . N . Kaifeng City, Pingdingshan
f Jilin Province, Liaoning Province . .
location . - City, Zhoukou City, and
Shanxi Province, and Inner 7 .
. . Xinxiang City in Henan
Mongolia Autonomous Region .
Province
. o)
Acqulsm'on 86% points were recorded every 20 s 93% points were recorded
frequencies every 5s
GNSS Jiangsu La{l ghe antrol Systen_l Co., Jiangsu Langhe Control
Receiver Co and Beg ing Universal Mobile System Co
) Linking Technology Co. '
Agrlcplture Welcha¥ Lovol Heavy Ind}lst‘ty Co., Jiangsu World Agriculture
Machinery and Jiangsu World Agriculture Machinery Co
Co. Machinery Co. Ty 0.

Table 3 Hardware environment of the experiment

Configuration Parameter
Programming language ~ Python3.7
Library and wrapper PyTorchl.13.1
CPU Intel(R) Xeon(R) Gold 6226R CPU @ 2.90 GHz
GPU NVIDIA Tesla V100

Operating system Ubuntul8.04

3.2 Performance metrics

In this study, multiple evaluation metrics were employed to
comprehensively assess the performance of the proposed model.
The following are the definitions of the evaluation metrics used in
this study. The accuracy (Equation (10)) represents the proportion
of correctly classified samples by the model out of the total
samples. Here, TP represents the number of true-positive samples,
TN represents true-negative samples, FP represents false-positive
samples, and FN represents false-negative samples. Precision
(Equation (11)) measures the model’s ability to correctly identify
positive samples among those it predicts as positive. Recall
(Equation (12)) quantifies the model’s ability to correctly recognize
positive samples among all actual positive samples. The F1 score
(Equation (13)) is a combined metric that balances both precision
and recall to assess classification accuracy and the model’s ability
to identify positive samples. In this research, each of these metrics
separately was calculated for the “field” and “road” categories as
positive cases. Subsequently, we compute the average metric values
across all categories. By taking into account all of these evaluation
metrics, the aim is to provide a comprehensive assessment of the
model’s performance.

TP+TN

A L L
CCUTaCY = b f TN+ FP+FN

(10)
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TP
Precision = ———— (11)
TP+ FP
TP
Recall = ——— (12)
TP +FN
Precisi Recall
F1 — score = 2 x Frecision xReca (13)

Precision + Recall

3.3 Method comparisons and discussion

To validate the reliability and effectiveness of FDRNet, it was
compared with 6 existing models for road classification: Decision
Tree (DT)*, DBSCAN+Rules®, Graph Convolutional Network
(GCN)®,  Random Forest (RF), XGBoost, and Multilayer
Perceptron (MLP). Among them, GCN is the state-of-the-art
method among all current field road classification models.

Tables 4 and 5 present the overall classification results of the
proposed method and other models on the corn and wheat harvester
trajectory datasets. On the corn harvester trajectory dataset, our
method achieved an accuracy of 96.88% and an Fl-score of
93.54%. The accuracy was 7.64% higher than that of the second-
best model (DBSCAN+Rules), and the maximum improvement in
accuracy was 38.92% over that of the DT. The Fl-score was
13.66% higher than the second-best model (DBSCAN+Rules) and
exhibited a maximum improvement of 38.27% over the DT.
Similarly, on the wheat harvester trajectory dataset, our method also
obtained the best accuracy (96.68%) and F1-score (94.19%). The
accuracy was 8.73% higher than that of the second-best network
(GCN) and showed a maximum improvement of 45.54% over that
of the DT. The Fl-score was 18.32% higher than the second-best
network (GCN) and exhibited a maximum improvement of 46.39%
over DT. Tables 6 and 7 detail the specific classification results of
the proposed method and other methods on the maize and wheat
harvester trajectory datasets. From the tables, it is evident that
existing models exhibit limitations in classifying road trajectory
points. However, the model of this study significantly improves
upon the other models in this respect. On the maize and wheat
harvester trajectory datasets, FDRNet achieved F1-scores of 88.89%
and 90.40%, respectively, for road trajectory points, surpassing the
best existing results by 22.73% (DBSCAN+Rules) and 31.60%
(GCN), respectively.

Table 4 Overall performances of all methods on the corn
harvester trajectory dataset

Method Accuracy/%  Precision/%  Recall/%  Fl-score/%
DT 57.96 58.01 60.57 55.27
DBSCAN+Rules 89.24 82.78 77.72 79.88
GCN 88.61 87.93 67.85 72.64
RF 78.13 71.67 73.78 72.52
XGBoost 68.46 64.03 67.76 64.11
MLP 84.08 88.89 69.30 72.95
FDRNet 96.88 92.56 94.58 93.54

Table S Overall performances of all methods on the wheat
harvester trajectory dataset

Method Accuracy/%  Precision/%  Recall/%  Fl-score /%
DT 51.14 53.17 57.41 47.80
DBSCAN+Rules 70.84 63.75 70.68 63.90
GCN 87.95 87.64 71.39 75.87
RF 78.29 68.06 68.25 68.60
XGBoost 62.28 57.87 61.46 56.38
MLP 85.70 90.46 66.82 70.95
FDRNet 96.68 95.65 92.88 94.19

Table 6 Comparison of seven segmentation models on “field”
and “road” categories on the corn harvester trajectory dataset

Field Road
Method Precision/ Recall/  F1- Precision/ Recall/  Fl1-
% % score/% % % score/%
DT 82.65 5527  66.25 33.36 65.87  44.29
DBSCAN+Rules  91.81 95.45  93.60 73.75 59.98  66.16
GCN 88.72 98.92  93.54 87.15 36.79  51.73
RF 87.39 82.62 84.94 55.95 64.94  60.11
XGBoost 85.81 69.19  76.61 42.25 66.33  51.62
MLP 82.80 99.29  90.30 94.99 39.31  55.60
FDRNet 98.63 97.74  98.18 86.49 91.43  88.89

Table 7 Comparison of seven segmentation models on “field”
and “road” categories on the wheat harvester trajectory dataset

Field Road
Method Precision/ Recall/ F1- Precision/ Recall/  F1-
% % score/% % % score/%
DT 82.14 48.51  61.00 24.17 60.92  34.61
DBSCAN+Rules  91.00 7094  79.73 36.50 70.42  48.08
GCN 88.03 98.44 9294 87.25 4434  58.80
RF 87.16 84.97  86.05 48.96 53.53 51.14
XGBoost 85.38 62.89  72.43 30.35 60.04  40.32
MLP 84.86 99.62  91.65 96.06 34.03 50.25
FDRNet 97.19 98.81  97.99 94.12 86.96  90.40

The varied results in Tables 4-7 can be attributed to differences
in their information extraction capabilities. DBSCAN+Rules is a
density-based clustering algorithm that uses only longitude and
latitude as features and fails to fully extract the feature distribution
among trajectory points. The DT, RF, and XGBoost methods rely
solely on individual kinematic features without effectively
integrating information from different features, resulting in
insufficient feature extraction. Additionally, these methods make
independent judgments based on each feature, overlooking the
correlation between features. An MLP, a common feedforward
neural network model with fully connected layers, tends to learn
shallow-level features and lacks the ability to extract complex,
abstract high-level features effectively. A GCN constructs a
spatiotemporal relationship graph using trajectory points, storing the
connectivity between corresponding nodes in an adjacency matrix.
However, this approach computes only the local spatiotemporal
relationships between trajectory points, neglecting the extraction of
global motion information. Subsequent networks heavily depend on
the features extracted from the spatiotemporal graph. In contrast, the
approach of this study extracts rich trajectory feature information
from multiple perspectives, capturing the correlated information
among different trajectory points comprehensively. Subsequently,
EfficientNet-B0 is employed to extract associated features between
different features within an individual trajectory point.

Moreover, the weights of the feature map channels are
dynamically adjusted, and important features are automatically
selected to enhance the model’s perception of trajectory features.
Therefore, this model can more effectively identify trajectories.
Four sets of maize and wheat harvester trajectory data were
randomly selected from outside of the training and testing sets as
the observation examples. Figures 6 and 7, respectively present the
classification results of the seven algorithms on these examples. The
images use remote sensing satellite images as the base. The green
dots represent trajectory points predicted as fields, and the red dots
represent trajectory points predicted as roads. From the figures, it is
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evident that the proposed model can predict the trajectory point efficiently and accurately perform field-road trajectory
categories more accurately, demonstrating that this method can classification.
Example 1 Example 2 Example 3 Example 4
z z - z
7 z p z
DT : z
116.537°E  116.542°E  116.546°E  116.551°E 116.037°E  116.047°E  116.057°E  116.066°E ; 115.396°E  115.399°E  115.401°E  115.403°E
[+ - - z
DBSCAN+Rule ; £ z z
: : z : z
116.537°E  116.542°E  116.546°E  116.551°E 116.057°E  116.066°E 123.408°E  123418°E  123.428°E  123437°E 115.396°E  115.399°E  115.401°E  115.403°E
? / o - z z
B ST . . z
GCN =, '8 :
c il £ Z
116.537°E  116.542°E  116.546°E  116.551°E 116.057°E  116.066°E 123.408°E  123418°E  123.428°E  123437°E 115.396°E  115.399°E  115.401°E  115.403°E
RF ; z : :
- : Z
116.537°E  116.542°E  116.546°E  116.551°E 116.037°E 116.057°E  116.066°E 115.396°E  115.399°E  115.401°E  115.403°E
7 ot z z z
XGBoost ‘ i z = z
z : z
116.537°E  116.542°E  116.546°E  116.551°E 116.047°E  116.057°E  116.066°E 115.396°E  115.399°E  115.401°E  115.403°E
: BT z - z
MLP ' z P z
: : z : z
116.537°E  116.542°E  116.546°E  116.551°E 116.047°E  116.057°E  116.066°E 123.408°E  123.418°E  123.428°E  123.437°E 115.396°E  115.399°E  115.401°E  115.403°E
FDRNet

43.930°N 43.936°N 43.942°N 43.947°N
30.580°N 30.581°N 30.583°N 30.585°N

£ I B
; ; il ©

L, kS

£ g
B 2
H z

123408°E  123418°E  123.428°E  123.437°F 15396°E 115399°E 115401°E  115.403°E

116537°E 116.542°E 116.546°E  116.551°F 16037°E 116047°E  116.05T°E  116.066°E

Figure 6 Field-road trajectory classification results for all models on the corn harvester trajectory dataset

3.4 Ablation experiments excluded the multi-range feature enhancement module. To evaluate

The deformation feature module is the core part of FDRNet. It the impact of multi-range feature enhancement on the performance
provides a new paradigm for CNN-based networks to directly of the FDRNet model, ablation experiments were conducted on corn
handle time-series agricultural machinery trajectories. If this and wheat harvester trajectory datasets to assess the influence of
module is removed, FDRNet cannot work properly. Therefore, for multi-range feature enhancement (FE). The results are presented in

the purpose of validating the effectiveness of FDRNet, we only Tables 8-11.
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Figure 7 Field-road trajectory classification results for all models on the wheat harvester trajectory dataset

Table 8 Results of ablation experiments on feature-enhanced Table 9 Results of ablation experiments on feature-enhanced
and balanced datasets on the corn harvester trajectory dataset and balanced datasets on the wheat harvester trajectory dataset
Method Accuracy/%  Precision/%  Recall/%  Fl-score/% Method Accuracy/%  Precision/%  Recall/%  Fl-score/%
FDRNet 96.88 92.56 94.58 93.54 FDRNet 96.68 95.65 92.88 94.19
FDRNet(W/O)FE 79.69 63.72 68.47 65.25 FDRNet(W/O)FE 84.57 73.28 70.97 72.01
The multi-range feature enhancement module enriches the enhancement module, resulting in FDRNet(W/O)FE, which
number of trajectory features by incorporating short-range and long- represents the model without the feature enhancement module.

range features. To verify its effectiveness, we removed the feature Table 8 shows that the addition of the feature enhancement module
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led to a 17.19% improvement in accuracy and a 28.29%
improvement in the F1 score for the corn harvester trajectory
dataset. Similarly, on the wheat harvester trajectory dataset (Table 9),
the accuracy increased by 12.11%, and the F1-score improved by
22.18%. Tables 10 and 11 present the performance comparisons for
the “field” and “road” categories. The addition of the feature
enhancement module resulted in a more significant improvement in
the Fl-score for the “road” category. Specifically, for the corn
harvester trajectory dataset (Table 10), there was a 46.03%
improvement, and for the wheat harvester trajectory dataset
(Table 11), there was a 37.15% improvement. This indicates that
with a larger feature dimension, the model extracts richer motion
information from agricultural machinery trajectories, enabling more
effective identification of different trajectory categories, especially
enhancing the performance of minority categories.

Table 10 The performances of ablation experiment on “field”
and “road” categories on the corn harvester trajectory dataset

Field Road
Method Precision/ Recall/  F1- Precision/ Recall/  F1-
% % score/% % % score/%
FDRNet 98.63 97.74  98.18 86.49 91.43  88.89

FDRNet(W/O)FE ~ 91.34 84.25  87.65 36.11 5270 42.86

Table 11 The performances of ablation experiment on “field”
and “road” categories on the wheat harvester trajectory dataset

Field Road
Method Precision/ Recall/  Fl1- Precision/ Recall/  Fl1-
% % score/% % % score/%
FDRNet 97.19 98.81  97.99 94.12 86.96  90.40

FDRNet(W/O)FE ~ 89.61 91.94  90.76 56.96 50.00 53.25

In summary, the results of ablation experiments demonstrate
the crucial role of feature enhancement in improving the
performance of field-road classification models. By enhancing the
model’s feature dimensions from multiple perspectives, we are able
to more accurately represent the feature distribution. This
effectively addresses the challenge of achieving low classification
performance in minority classes. As a result, the model’s
performance improved overall.

4 Conclusions

In this study, to effectively classify “field” or “road” points in
agricultural machinery trajectories, a solution called the feature
deformation network with multi-range feature enhancement
(FDRNet) was proposed. FDRNet includes three key components:
multi-range feature enhancement, feature deformation methods, and
the EfficientNet-BO network from the field of image classification.
These elements work together to comprehensively extract features
from agricultural machine trajectories. FDRNet tackles issues
related to agricultural machine trajectories, including the
insufficient exploration of spatiotemporal features, insufficient
exploration of trajectory features, and the challenge of directly
using convolutional neural networks to extract these features. This
approach achieves accurate classification of agricultural machinery
trajectory points into field points and road points. Experimental
evaluations demonstrate that the model achieves 96.88% accuracy
and 93.54% F1-score on the corn harvester trajectory dataset and
96.68% accuracy and 94.19% Fl-score on the wheat harvester
trajectory dataset, outperforming all the existing methods. This
strongly validates the feasibility and superiority of the proposed

approach for field-road trajectory classification tasks.

Due to various factors, such as the type of harvested crops,
geographical location, time, weather, and agricultural machinery
terminal manufacturers, the data exhibit various frequencies and
feature distributions. Because of significant differences in the
distribution of data features, existing models struggle to perform
well across all data types. To achieve better results, we trained
separate models for each distinct data distribution. However, the
multitude and diversity of data types increase training costs and
reduce the real-time processing of data. In future research, we plan
to focus on developing a universal model for field and road
classification. This model aims to learn the feature distributions of
various data types, enabling accurate predictions of trajectory
categories.
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