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Comparison of the feedback linearization plus LQR controller and the PID

controller for greenhouse indoor climate
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Abstract: Greenhouse environmental control systems can improve the growth and quality of the plants within greenhouses by
keeping a constant environment. Greenhouse climate is a multi-input multi-output system that is significantly affected by
climate factors like temperature, relative humidity, and carbon dioxide levels. Due to the nonlinearity and existence of coupling
among climate factors, the designed controller should provide good control performances. This study proposed both the
feedback linearization plus linear quadratic regulator (LQR) controller and the proportional-integral-derivative (PID) controller
for indoor air temperature and humidity control of a greenhouse system. The nonlinear greenhouse model was transformed into
its equivalent linear form using input-output feedback linearization. Then, a proportional-integral type LQR controller was
designed for the linear form to achieve the overall nonlinear feedback control law. In addition, the practical PID controller was
designed and its gains were tuned using a genetic algorithm by considering the integral of absolute error and control deviation,
and the integral of squared error and control deviation. A set of simulation works done on the nonlinear model illustrates the
effectiveness of the two control methodologies. Two control methods, feedback linearization plus LQR and PID, demonstrated
effective performance in both setpoint tracking and disturbance rejection. The feedback linearization plus LQR controller
exhibited superior disturbance rejection capabilities, characterized by reduced perturbation peaks and faster recovery times.
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Conversely, the PID controller demonstrated superior setpoint tracking performance with minimal overshoot.
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1 Introduction

A greenhouse is a transparent structure built to protect various
vegetables, flowers, and any other plants against excessive cold or
heat and provide proper growth conditions. The plant growth and
quality depend significantly on greenhouse climate factors, such as
air temperature, humidity, carbon dioxide, soil humidity, and so on.
Even though greenhouse plants require proper control of these
climate factors, the existence of non-linearity and strong coupling
among these parameters make the control system difficult.
Moreover, the greenhouse climate system is a multi-input multi-
output (MIMO) system with both internal and external disturbances,
and its mathematical model is characterized by both complexity and
nonlinearity!. Hence, a technique that can provide optimal
conditions for plants through the design of a better control system is
required.

Recently, a number of studies to model and control greenhouse
environment have been proposed in the literature, including model
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predictive  control®”,  proportional-integral-derivative  (PID)
control®”, linear quadratic regulator (LQR) control®, feedback
linearization  control®', sliding mode control'>", neural
networks!", fuzzy logic"*"", and adaptive control"®. Gruber et al.”
proposed a nonlinear model predictive control method for
regulating greenhouse temperature using a Volterra model. They
aimed to improve the accuracy and efficiency of greenhouse climate
control systems while reducing energy consumption. Bersani et al.”!
proposed a control strategy that uses a mathematical model to
predict the temperature response of the greenhouse and adjusts the
heating and cooling system accordingly, in order to maintain a
desired temperature range. Several control methods have been
proposed, but the PID controller has been widely used in different
greenhouse climate control systems due to its feasibility and easy
implementation. Hu et al.®! proposed a non-linear PID controller
tuning method based on a multi-objective optimization algorithm
called NSGA-II to optimize the trade-off between control
performance and energy consumption. Gao et al.!’ presented a PID
controller based on Kalman filtering to improve the control
performance of greenhouse temperature. The authors emphasized its
potential for improving the sustainability of agriculture. Su et al.l”
demonstrated a self-tuning PID control algorithm based on a
recursive least square method and validated its effectiveness
through simulations and experiments. Essahafi et al.’¥! proposed a
new control strategy for greenhouse microclimate control based on
an adaptive Generalized Linear Quadratic (GLQ) approach that has
the ability to adapt to uncertainties and disturbances in the
greenhouse environment.

Chen et al.”! proposed an adaptive feedback linearization-based
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predictive control strategy for greenhouse temperature control that
combines feedback linearization and predictive control techniques.
The designed system improved the accuracy and efficiency of
temperature control. Chen et al.'” presented a sliding mode control
approach based on disturbance observer for a greenhouse climate
system. The proposed method effectively tracks desired temperature
and humidity levels, as shown in the simulations. Lammari et al.'"
proposed a new GA PI sliding mode control method for the MIMO
greenhouse climate control system. The simulation result showed
better results in accuracy and settling time compared to traditional
methods. The research of Escamilla et al."¥ described the potential
of artificial neural networks (ANNSs) in greenhouse technology and
smart agriculture. It presented the applications of ANNS, including
climate control systems, crop yield prediction, and disease
detection. Ali et al."” focused on the development and experimental
validation of a fuzzy logic controller for an agricultural greenhouse.
The controller regulates temperature and relative humidity to
optimize plant growth. Chhipa et al.'” proposed the use of fuzzy
logic controllers to maintain an optimal internal climate for plant
growth in a greenhouse. They highlight the benefits of fuzzy logic
control over traditional methods and propose a new approach for
controller tuning through hybridization with genetic algorithms.
Vanegas et al.'"” presented fuzzy inference systems (FIS), which are
a popular method for predicting and controlling greenhouse
humidity due to their ability to handle uncertainty and non-linearity.
An intelligent approach was designed to measure errors of the
sensors adaptively!¥. A study was also conducted on decoupling
control strategies for greenhouse environments. This approach
utilizes coordinate transformation and state feedback to decouple
system variables, followed by the implementation of a PID
controller to simplify the overall system™. Although each of these
methods possesses certain advantages, there remains potential for
improvement via continued research efforts.

In this study, two design methods, that is, feedback
linearization plus linear quadratic regulator (LQR) control and PID
control are presented to keep the internal temperature and humidity
of the greenhouse climate at the required values. For the former, the
nonlinear greenhouse model is transformed into its equivalent linear
form using input-output feedback linearization. Then, a proportional-
integral type LQR controller is designed for the decoupled linear
form to achieve the nonlinear feedback control law. For the latter,
the practical PID controller is considered to manipulate the system
outputs to reduce the derivative kick phenomenon that may occur in
an ideal derivative action. The gains of the PID controller are tuned
using a genetic algorithm by minimizing the integral of absolute
error and control deviation (IAEU) and the integral of squared error
and control deviation (ISEU). The effectiveness of the proposed
methods is illustrated through a set of simulation works on the
nonlinear model for the daytime summer season operation.

2 Mathematical modeling of a greenhouse system

The greenhouse, integrating various physical and biological
phenomena, behaves according to nonlinear characteristics®**. Two
physical systems for ventilation and spraying are used to regulate
internal temperature and humidity. The ventilation system circulates
indoor air for cooling, and the fogger system sprays fine water
droplets for cooling and humidity control. The greenhouse system is
highly prone to primary external disturbances, such as intercepted
solar radiation, external temperature, and external humidity, unless
the glazing, shading, and other disturbance rejections are chosen
properly. Figure 1 shows a greenhouse indoor climate system with

three external disturbances.

The dynamic behavior of the greenhouse is based on the energy
balance and mass transfer equations. The overall system differential
equations are given by Nazir et al.”!

dT;, 1
w2 £ 10045, = X 0] LOIT
t l.,
Tou (D] - F [T () = Tou (O] (1a)
dH, 1
m([) q/tog (l)+a S (t)_ ( ) [Hm ([) Hout (t)] (1b)

d Vv t,

T(®) and H,(f) are the indoor temperature (°C) and
humidity ratio (g H,O/kg of dry air), respectively; V,, (1), qestop(?),
and Q,(¥) are the percentage of the maximum ventilation rate y

max ?

where,

the maximum water capacity g, max Of the fog system, and the heat
(W) supplied by a heater system, respectively; Si(#) is the
intercepted solar radiant energy (W), T,,(¢?) is ambient temperature
(°C), H,,(?) is the external humidity ratio (g H,O/kg of dry air), and
UA is the heat transfer coefficient of enclosure (W/K). 2'= A¢og maxs
where, 4 is the latent heat of vaporization. a'= o/(AVH), where, a is
the coefticient to account for shading and leaf area index.
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Figure I A greenhouse indoor climate system

The physical model of the greenhouse in Equation (1) can be
used for multi-seasons, but here we consider only summer season
operation. Then, the model is simplified to a two-input two-output
coupled nonlinear system by setting 0,(¢)=0. By defining the indoor
temperature T,(f) and indoor humidity H;,(¢) as state variables x,(7)
and x,(?), respectively, the ventilation rate V(;) and the fog rate
Grog(?) as control variables u,(f) and u,(¢), respectively, and the
intercepted solar energy S,(¢), the external temperature 7,,(f), and
the external humidity ratio H,,(¢) as disturbances d,(¢), d,(f), and
dy(f), respectively, the following state space representation was
obtained:

[d, ()= X (1)) ‘(’)

[x,()-d, (D] - 7[-751 ) —d,(1)]
(2a)

1
(1) = Eo

u, (1)

() = %'42 O +a'd (¢ ) —d; (1] (zb)

Note that the disturbances can be measured using sensors
installed in the greenhouse. Equation (2) can be rewritten in an
affine form as,

x=f(x,d)+gx,du (3a)

y = h(x) (3b)

where, x= [x; x,]" €W, y= [y, ».]" €W, u=[u, u,]" €W, and d= [d,
d, d;]" €%, which are the state vector, the output vector, the control
input vector, and the disturbance vector, respectively. %’ means a
real vector space.
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f V- %, gt - K, and h: ¥*— R are sufficiently smooth
vector or matrix functions defined as,

UA ]d UAd
fed=| ¢ TeMT e " (3¢)
a'd,

Sdmx) -
gr.d)=[g(x.d) g.(x.d)]=| | ‘ (3d)

Z(ds_%) V

_ hi(x) s

ho) = { () } - { X, } (3¢)

Assuming the system operates at a steady state (i, xo, and y,),
the following relationship holds:

u, = _gil(xu’d)f(xmd)

4
Yo = h(x,) @

3 Controller design strategies

3.1 Feedback linearization plus LQR

Feedback linearization is a powerful technique that employs
nonlinear coordinate transformations to render a nonlinear system
linear. As can be seen from Equation (3), the outputs are
indirectly related to the inputs through the state variables and the
equations. Hence, it is not easy to see how the inputs can be
designed to control the tracking behavior of the outputs. This
difficulty can be solved by finding a direct relationship between the
system outputs and the control inputs using input-output feedback
linearization.

The concept of relative degree plays an important role in the
analysis of nonlinear systems. This provides a necessary and
sufficient condition for the existence of a full feedback linearization
control law for the affine system in Equation (3). To analyze our
problem further, we will employ the Lie derivative of a function 4
with respect to vector field f, denoted by

Lyh(x) = %f (x), Lih(x)=L;L;h(x) = %J‘ (),
Lih(x) = L,LY h(x) = (9([3; ") f(.
Definition 1 (Relative degree): Consider a SISO nonlinear
system as,
x=f(x)+gx)u (5a)
y=h(x) (5b)

where, x€X", yEXR, and uEX are the state vector, output, and
control input, respectively. f: B'—R", g: W'—R, and h: '— R are
sufficiently smooth vectors or functions.

Then, it is said to have a relative degree r, 1<r<n at x in a
region Dy C D if and only if

LLih(x)=0 for i=0,2,....,r—=2but L 'h(x)#0  (6a)

" 8h(x)
ox;

— dh
L =" % o), L) = s (6b)

i=1

To check whether feedback linearization can be applied to the
system in Equation (3) or not, the relative degree of the system is
examined through Theorem 1",

Theorem 1 (Fully feedback linearizable): Consider the MIMO

nonlinear system in Equation (3). Then, the system is fully feedback
linearizable, that is, the following condition is satisfied: Relative
degree =n, where n denotes the dimension of the system.

Proof: Finding the first derivative of the outputs in Equation (3)
yields,

PI } _0hx) . _ 9h(x) Fed)+ dh(x) o, du = L) + L k()
Vs ox ox ox
(7a)
where,
Lhy(x)
Lh(x)=| " } 7b
) { Lyhy(x) (75)
[ Ly(x)  Lyh(x) }
L.h(x) = { L@ L) (7¢)
Rewriting Equation (7) yields,
i =L (x) + Ly, by (x)uy + Lo, by (X)u, = [1 0] f(x,d)+
1 pi
lT(d2 -Xp) _E
oyl "~ u +1 0] o |y =
L —x) 1
t‘, 3 2 V’
UA 1 UA 1 A
_FOXI+Fodl+Fod2+?v(d2_XI)ul_Eou2 (83)
V2 =Lyhy(x) + Ly oy (x)uy + Lo, by (x)u, = [1 0] f(x,d)+
1 yi&
?(dz -Xx) —C
[rtoy| = u +[1 0] 10 w =
E(ds -X) %
'd ! d ! (8b)
aat+ Z;( = X)u, + vuz

Since at least one of the inputs appears explicitly in the
equation for the first derivative of both y, and y», it is clearly shown
that the relative degree of each output is 1, that is, »,=r,=1. Hence,
the total relative degree r=r+r, is equal to the system dimension of
2 and the full-state feedback controller design is possible.

3.2 Pl-type LQR control incorporating feedback linearization

It is known by Theorem 1 that the full-state feedback controller
design is possible for the MIMO system in Equation (3). From
Equation (7a), if v=[v; v,]" is chosen as,

v=Lh(x)+L.h(x)u (%a)

where,
Loh(x) = f(x,d) (9b)
L.h(x) = g(x,d) (9¢)

Note that the matrix g(x, d) in Equation (9¢) must be
nonsingular for the system to be 1/O linearized and decoupled. The
linear input-output mapping is obtained by substituting Equation
(9a) into Equation (7a) as follows:

BEE (10)
Y2

Defining the state variables as z;= y,, and z,= y, with the fact
that y,= x;, and y,= x, gives the following form:

z=Az+By (11a)

y=Cz (11b)


https://www.ijabe.org

February, 2025 Mengesha K A, etal. Comparison of the feedback linearization plus LQR controller and the PID controller for greenhouse

Vol. 18 No. 1 77

[z _00} _{10} _{10}
Z_{ZJ’A{O 0" B0 1 ™= 4

(11¢)

In designing a greenhouse indoor climate control system,
exhibiting a particular desired response of the inside air temperature
and humidity is the principal issue in the presence of either setpoint
or disturbance changes. State feedback controllers offer a
straightforward design process, exhibit robust performance in the
presence of uncertainty, and improve overall system characteristics,
such as rise time, overshoot, and settling time”. A common
challenge in state feedback control is stabilizing systems against
disturbances while simultaneously tracking setpoint changes. For
the output to follow the desired setpoint, new state variables are
defined as,

g = [0 -yar (12a)

g = [ o=y (12b)

where, y,, is the desired setpoint for y, and y,, for y,. Differentiating
both sides of Equation (12) and combining them with Equation (11)
forms an augmented equation as,

%=AZ+BV—|: (I) }y, (13a)
y=C% (13b)
where, 2=1[2, 22 ¢ @1", ¥, = ¥l
00 00 10
- [A 0 000 0| - [B 0 1
A_{C 0}‘ 1 000 ’B"{o}_ 0 0|’
01 00 0 0
s 1 000
c=|[c 0]_{0 Lo o} (13¢)

State feedback involves a linear combination of the state
variables to compute a control law for the augmented system. The
existence of such a control law depends upon the controllability of
the pair of (4, B). The augmented system in Equation (13) is
controllable if and only if the pair (4, B) of the original system in
Equation (11) has the rank of »n and the following condition is
satisfied™:

B A
0 _C}—n+p (14)

rank {
where, n denotes the order of the original system and p is the
dimension of y.

From the fact that the pair (4, B) in Equation (11) has the rank
of 2 and in Equation (14) has the rank of 4, the pair (4, B) is
controllable. Therefore, a Pl-type state feedback control law can be
synthesized. There are various methods for designing a state
controller™.. In this paper, the LQR design method is adopted. The
LQR provides a procedure to compute optimal control laws by
minimizing a quadratic cost function:

J= % of(iTQi +v Ry)dr (15)

where, @ €1 is a semi-positive definite and symmetric matrix and
R E %7 is a symmetric and positive definite matrix.
The optimal feedback gain matrix [ is given by

K=R'B'P (16)

where, PER"* denotes a positive definite symmetric constant
matrix obtained from the solution of the Riccati differential
equation.

A'P+PA-PBR'B'P+Q=0 (17)

Proper weighting matrix selection is crucial for successful
controller design. @ is used to penalize the bad performance by
minimizing the system states, while R is used for penalizing the
actuator’s effort (fan and fog spray). The control law for both
indoor air temperature and humidity is given by

v=-Ki=-K,x-Kgq (18)

where, K=[K, k; k] and g= [g, ¢,]". Substituting Equation (18)
into Equation (9a) gives the overall control laws as,

u=g"(x,d)lv—f(x,d)] = g (x,d)[ - K, x+
ki [0 =y0dt+ka [ G —yd—fxd)]  (19)

The block diagram of the overall control system is illustrated in
Figure 2.

External disturbances (d,, d», and ds) ‘

l l Temperature sensor }‘7

k.

Fan

yal) + e | LQR v u(t)
— temperature =
controller @
ek Fog spray Greenhouse
linearization
LQR va(t) ux(f) »a(0)
huminaity [ > B

controller

T i

Figure 2 Closed-loop system structure with feedback linearization
plus LQR control

Humidity sensor

When the large setpoint is abruptly changed, the controller
output can exceed the limit values of the actuator input. Hence,
input saturation is used to limit both the ventilation rate and fog rate
within the range [0,1].

3.3 PID control

Due to its efficiency and easy implementation, the PID
controller has been widely adopted as an alternative to greenhouse
climate control®”. Abrupt changes in setpoint and/or big noises may
cause the derivative term of the standard PID controller to be
instantaneously large, a phenomenon called derivative kick.
Repeatedly excessive changes in input signals shorten the life of the
actuator. So, in this work, the practical PID controller is used to
manipulate the system outputs. Two PID controllers are expressed.

K K

Uil _ K+ — + 209 for temperature control  (20)

E\(s) s Tyr

1+ —s5
N
K K; Ky .
gz( ) _ o — + di;g for humidity control ~ (21)
»(5) 1+ %S

where, K,r, Kir, and K- are the proportional, integral, and
derivative gains of the temperature controller, respectively. Ky,
Ky, and Ky are the proportional, integral, and derivative gains of
the humidity controller, respectively. N is the derivative filter
divisor, usually set to N=5-50", with 10 being a common choice.
Figure 3 shows the PID control system for greenhouse climate.
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Figure 3 Closed-loop system structure with PID controllers

The tuning of controller gains can lead to substantial
performance enhancements. Optimal tuning minimizes tracking
errors while stabilizing the system. However, faster responses often
require larger control inputs. For a trade-off between them, two
performance criteria, IAEU and ISEU, are employed in this study.

IABU = [ fle, @) +lex(0l+ wildu, 0] +woldwllde— (22)

ISEU = j{:j [€3(t) + €(1) + w Al (£) + w,Aub(6)]de (23)

where, e,(t)= yu(0)31(0)s exO1= O ¥o(0), Auy(dy= (8- s, and
Auy(ty= uy(£)—uyy. u;, and u,, denote the control inputs at an
operating point as in Equation (4). w, and w, are user-defined
weighting factors, and #, is the upper bound of integration time.
Selecting an appropriate value for the weighting factors in
Equations (22) and (23) is one of the important tasks from a
practical controller design perspective. Decreasing the weighting
factor ensures a faster response of the closed-loop system, whereas
increasing the weighting factor reduces unnecessarily excessive
control effort at the expense of a slower response. Thus, the
weighting factors should be chosen to obtain a good compromise
between the swiftness of the closed-loop response and the control
effort.

As seen in Equations (20) and (21), the two PID controllers
have a total of six gains (K,r, Kir, Kqr, Kpn, Kin, and Kgpy). Tuning
these gains to improve the performance of the feedback control
system requires an optimization method™. For this, a GA is used.
The following pseudocode illustrates the genetic algorithm process:

t=0
Generate initial population P(#) randomly
Evaluate the individuals in P(¢)
while (criterion is not satisfied) do
t=t+1
Select the individuals from P(#-1) to reproduce P(¢)
Crossover the individuals in P(¢) with crossover probability
Mutate the individuals in P(¢#) with mutation probability
Evaluate the individuals in P(¥)

end while

4 Simulation results and discussion

This section presents a set of simulation works to demonstrate
the effectiveness of the proposed controllers. The responses of the
controllers are compared with each other and their performances are
assessed on the nonlinear model in Equation (1). For simulation, the
size of the greenhouse geometry is surface area=1000 m’ and
height=4 m. The parameters and their values of the greenhouse
climate model at a nominal condition are listed in Table 1.

It is considered that the greenhouse has a shading screen that

reduces the incident solar radiation energy by 60%. The

disturbances d|, d,, and d; used in this simulation have initial values
of 300 W, 35°C, and 4 g H,0/kg, respectively. The initial values
x1(0) and x,(0) of inside air temperature and internal humidity ratio
are set to 30°C and 18 g H,0/kg for the daytime of the summer
season, respectively. Also, the ventilation rate and fog rates are
taken in the range of 0 and 1.

Table 1 Parameter values of the greenhouse model for
summer season operation

Parameters Values with units
UA 29.81 W/°C
Co —324.67 min-W/°C
tv 3.41 min
v 0.0752 g/m*min
o 0.0033 g/m*min"W
A 465 W

Simulations are conducted to evaluate three performance
criteria: setpoint tracking, disturbance rejection, and noise
reduction. The tracking performance is measured in terms of the rise
time ¢,, settling time ¢, overshoot M, integral absolute error IAE,
and total variation of the control effort TV. The regulation
performance is measured in terms of the peak time Z,,, perturbance
peak M, recovery time t., IAE, and TV. IAE and TV are

defined as,

y?

IAE = L” le(n)|dt (24)

m-1

TV ="l —u (25)
i=1

where, e= y,,—y, or y,,—,. u; is the control input at the ith iteration,
and m is the number of the computed inputs. M, denotes [yl
or [Vmin—y,l, and Z,, is the time that it takes for y to recover within
2% of y,. For our convenience, the abbreviations of FL-LQRYor
the feedback linearization plus LQR controller, PID-IAEU for
the PID controller tuned based on the IAEU performance index, and
PID-ISEU’for the PID controller tuned based on the ISE
performance index are used.
4.1 Controller settings

Although LQR provides control input in terms of minimizing
the quadratic performance index in Equation (15), user-defined Q
and R affect the overall performance. For this optimal control
problem, the following weighting matrices were found by trial and
error.

0 =diag(1,1,15,20) and R = diag(10, 10) (26)

With this choice of Q and R, the feedback gain matrices are
given by

K =

s i

K 1.5967 0 } @7

B {1.2247 0
re 0 1.7113

0 1.4142

Meanwhile, the six gains of the PID controllers were tuned by
the MATLAB GA function on the nonlinear model. The output
responses were obtained for calculating IAEU and ISEU, while the
set-point y,; was changed from 30°C to 27°C and y,, from
18 g H,O/kg to 21 g H,O/kg in combination with constant
disturbances. Table 2 lists the tuned gains of the PID controllers.

4.2 Setpoint tracking test

In the setpoint tracking test, setpoints y,; and y,, are changed
while disturbances remain constant. By considering a nominal
condition, three simulation scenarios are considered to check the
performance of the feedback control system:
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Table 2 PID controller gains tuned by a GA for the three controllers. Tables 7 and 8 show the summarized

Performance Temperature controller Humidity controller performance.
index Kyr Kir Kar Ko Kiy Kay B
10 I FL-LQR
TIAEU 2.518 0.038 2.287 0.609 0.159 0.292
ISEU 1294 0027 2461 0864 0001  0.307 I PID-IAEU
8 PID-ISEU
Scenario 1: y,; is decreased from 30°C to 27°C, and at the same 8
time y,, is increased from 18 g H,O/kg to 21 g H,O/kg; 'g 6
Scenario 2: y,; is decreased from 30°C to 27°C while y,, §
remains constant at 18 g H,O/kg; g A
Scenario 3: y,, is increased from 18 g H,O/kg to 21 g H,O/kg ‘%
while y,, remains constant at 30°C. &
As a result of Scenario 1, Figure 4 shows the responses of the 2r
indoor temperature with its corresponding control signal of the
closed-loop system using the FL-LQR, PID-IAEU, and PID-ISEU 0
controllers. It can be seen in the figure that the three methods Mp " & [4E v
perform satisfactorily in tracking the system to the setpoint, but FL- Figure 5 Performance comparison chart
LQR provides a faster response with an acceptable overshoot for the
setpoint change of temperature. Furthermore, the quantitative @ 21
performance comparison is summarized in Table 3 and Figure 5. It % 20
can be seen that the PID-IAEU controller outperforms FL-LQR and %" 19 :gILDLI(/)%l]zEU
PID-ISEU controllers in terms of overshooting M, and settling % 18 . _—PID-ISEU
time ¢, 0 20 40 60
30 :gILliL&%U a. Teiln];grlature
c ——PID-ISEU 1o —FL-LQR
S 28 2 ——PID-IAEU
= . ';5 ——PID-ISEU
=05
26 : : : I
0 20 40 60 =
t/min 0
a. Temperature 0 2' 0 4' 0 6.0
_ 10 t/min
% b. Control input
§ 05 Figure 6 Responses of the three methods for stepwise setpoint
§ :g{a&&l&} changes in temperature and humidity according to Scenario 1
= 0 . —PID-ISEU Table 4 Setpoint tracking performance of humidity and
' N t/min » ¥ control input responses
b. Control input Humidity Performance measures
Figure 4 Responses of the three methods for stepwise setpoint controllers M/% f,/min t/min IAE v
changes in temperature and humidity according to Scenario 1 FL-LQR 4499 1.802 4.992 4.089 1.436
PID-IAEU 14.670 0.599 4.138 1.536 1.393
Table 3 Setpoint tracking performance of temperature and PID-ISEU 3.317 0.550 3.376 1.723 1.393
control input responses
Temperature Performance measures 30 :g%[-)]—d&lléU
controllers M,/% t,/min t/min IAE a% =29 ——PID-ISEU
FL-LQR 4.010 1.955 5318 4.349 1.436 é 28
PID-IAEU 0.001 2.511 4.514 4.373 1.393 - 27
PID-ISEU 0.125 4.917 8.807 7.080 1.393 26 . . )
0 20 40 60
Figure 6 shows the humidity responses and the control inputs #/min
conducted under the same scenario. All responses follow the a. Temperature
setpoint well with a moderately smaller overshoot and reach the 20 —FL-LQR
steady state within 5 min. In this simulation case, PID-ISEU shows g" :gg}ggg
a better response with smaller M, and ¢, as compared to the others. % 1
Looking at Table 4 comparing the performance quantitatively, § 18
PID-IAEU shows a relatively large overshoot. i’ W
The second simulation was conducted according to Scenario 2. 170 10 20 3'0
Figure 7 lists the responses of indoor temperature and humidity for /min
b. Humidity

the three controllers. Table 5 and 6 list the calculated performance.
The third simulation was conducted according to Scenario 3.
Figure 8 shows the responses of indoor temperature and humidity

Figure 7 Responses of the three methods for stepwise setpoint
changes in temperature according to Scenario 2
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Table 5 Setpoint tracking performance of temperature
response for Scenario 2

Performance measures

Temperature
controllers M,/% t,/min t/min TIAE vV
FL-LQR 4.060 2.064 6.203 5.762 4.621
PID-IAEU 15.180 2.459 0.027 4.300 3913
PID-ISEU 20.800 4.811 0.223 8.465 6.529

Table 6 Regulation performance of humidity response for

Scenario 2
Humidity Performance measures
controllers #,/min Mye/(g HyO'kg ) frey/min IAE
FL-LQR 1.800 0.778 8.719 2.522
PID-TAEU 1.300 1.172 13.500 3.409
PID-ISEU 0.680 0.693 >120 3.728
30.10 ——FL-LQR
——PID-IAEU
_ ——PID-ISEU
O,{ 30.05 ¢
:{ g
30.00
0 20 40 60
t/min
a. Temperature
22
2
<
T 20
c ——FL-LQR
= 19 —PID-IAEU
= —PID-ISEU
18 . . .
0 20 40 60
t/min
b. Humidity

Figure 8 Responses of the three methods for stepwise setpoint
changes in humidity according to Scenario 2

Table 7 Regulation performance of temperature response for

Scenario 3
Temperature Performance measures
controllers t,/min M,eu/°C trey/min IAE
FL-LQR 0 0 0 0
PID-IAEU 0.100 0.047 >60 0.596
PID-ISEU 0.100 0.057 >60 1.019

Table 8 Setpoint tracking performance of humidity response
for Scenario 3

Humidity Performance measures

controllers t,/min M,J% t,/min t/min TIAE
FL-LQR 3.760 3.879 1.824 4.936 4.018
PID-IAEU 2.560 5.144 0.819 6.316 1.692
PID-ISEU - 0 0.762 1.723 3.320

The three methods provide satisfactory responses for the
setpoint change of y,,, but the response y, of FL-LQR is maintained
at the setpoint while both PID-IAEU and PID-ISEU show slow
recovery to the setpoint. This can also be seen in Tables 7 and 8.

4.3 Disturbance rejection test

Although the designed controllers were optimally tuned for the
purpose of setpoint tracking, the effect of disturbance affected by
weather conditions was also investigated on the response of the
system. The system has three disturbances, namely, intercepted
solar radiant energy d,, outside temperature d,, and outside

humidity ratio d;. Among them, d, and d, were considered to be
more variable than d;. Step changes were introduced to the closed-
loop system at 5 min, while it was operating in a steady state with
»=27°C and y,=21 g H,0/kg with d;=4 g H,0O/kg. d, was increased
from 300 W to 500 W and d, was increased from 35°C to 37°C.

Figures 9 and 10 depict the responses. For FL-LQR, the closed-
loop system causes a slightly larger deviation at 5 min, but it forces
the output y, back soon toward the setpoint y,,. However, PID-
IAEU and PID-ISEU require more recovery time than y,;. In
Figure 10, the case of y, is similar to the previous one.

26.9 —FL-LQR
——PID-IAEU
26.8 —PID-ISEU
0 30 60 90 120
t/min
a. Temperature
2 0.8
s 0.
£ N
2
3 07 —FL-LQR
\\Q’ ——PID-IAEU
= —PID-ISEU
0.6 1 1 1 1
30 60 90 120

t/min
b. Control input

Figure 9 Responses of the three methods for stepwise disturbance
changes at /=5 min

214 ——FL-LQR
g ——PID-IAEU
= ——PID-ISEU
Q 212t
as]
2
S 210
-

0 30 60 90 120
t/min
a. Temperature

0.23 ——FL-LQR
B —PID-IAEU
< 0.17 —PID-ISEU
B
S 012
=

0.07 0 30 60 90 120

t/min

b. Control input

Figure 10 Responses of the three methods for stepwise
disturbance changes at /=5 min

Disturbance rejection performances in terms of peak time #yc,
perturbance peak M., recovery time t.,, IAE, and TV were
gauged. Tables 9 and 10 list the quantitative comparison results,
demonstrating  FL-LQR’s  superior  disturbance rejection
performance over the PID controller.

Table 9 Quantitative comparison of the disturbance rejection
performance of temperature

Performance measures

Temperature

controllers Lpea/MiN Mo/ °C Le,/min IAE TV
FL-LQR 5.840 0.154 8.799 0.299 0.194
PID-IAEU 9.160 0.056 >120 3.186 0.592
PID-ISEU 12.100 0.100 >120 5.280 0.301
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Table 10 Quantitative comparison of the disturbance rejection
performance of humidity

Humidity Performance measures

controllers bea/min M, /(g HO'kg")  f/min IAE TV
FL-LQR 5.900 0.2530 10.849  0.504  0.012
PID-IAEU 5.000 0.0132 19.613 0.036  0.468
PID-ISEU 5.000 0.0132 >120 0.611  0.501

4.4 Noise rejection test

In feedback control systems, measurement noise, which is
introduced by sensors, can degrade control accuracy. To assess the
effectiveness of noise attenuation strategies, a simulation study was
performed. White Gaussian noise with a 20 dB signal-to-noise ratio
(SNR) was superimposed on the output signal, while the setpoint
was varied according to Scenario 1. Figures 11 and 12 show the
output responses and the control inputs in the presence of
measurement noises.

30 —FL-LQR
——PID-IAEU
<29 —PID-ISEU
S 28
=
27
26 I I 1
0 20 40 60
t/min

a. Temperature

——FL-LQR ——PID-IAEU —PID-ISEU

1.0

u,(¢)/(%ovent.rate)

0 20 40 60

t/min
b. Control input

Figure 11
Gaussian noise with 20 dB SNR while the setpoints are kept
constant at 28°C and 18 g H,O/kg

Noise rejection responses of the three methods under

24 ——FL-LQR
——PID-IAEU
——PID-ISEU

ni(0/()

0 20 40 60
t/min
a. Temperature

1.0 ——FL-LQR ——PID-IAEU ——PID-ISEU

0.5

u,(¢)/(Yovent.rate)

0 20 40 60
t/min
b. Control input

Figure 12 Noise rejection responses of the three methods under
Gaussian noise with 20 dB SNR while the setpoints are kept
constant at 28°C and 18 g H,O/kg

Upon the stabilization of y, at its setpoint, y, likewise
converges to its 21°C setpoint. Nevertheless, the PID IAEU
controller displays a slight steady-state error. Moreover, the
practical PID controller suffers from derivative kick, even with the

presence of a first-order filter. Figures 11 and 12 highlight the
enhanced noise robustness of the FL-LQR controller.

5 Conclusions

In this study, a nonlinear greenhouse mathematical model was
characterized under disturbances. The feedback linearization plus
LQR controller and the PID controller for both the indoor air
temperature and humidity control of a greenhouse system have been
presented and their performance has been compared. The
parameters of the PID controller were optimally tuned using a
genetic algorithm by minimizing the performance indices, namely
IAEU and ISEU. The controllers’ performance was analyzed by
doing both setpoint tracking and disturbance rejection tests. A set of
simulation works were carried out on the nonlinear system
according to designed scenarios. As expected, the two control
methods showed good performances in both setpoint tracking and
FL-LQR
performances in terms of disturbance rejection, with a lower
perturbance peak with a short recovery time, while PID-IAEU and
PID-ISEU showed good setpoint tracking performances with less
overshoot.

A subsequent research endeavor is needed to implement the
proposed control method in a real-world scenario and evaluate its

disturbance rejection. However, showed better

performance.
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