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Fusion of the deep networks for rapid detection of branch-infected
aeroponically cultivated mulberries using multimodal traits
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Abstract: Automatic diagnosis of diseases in aeroponically cultivated branches is crucial for enhancing the efficacy of root
development and overall plant survivability during propagation. Deep learning and visible imaging offer potential for precise
health assessment, despite challenges in feature selection and model design, impacting diagnostic accuracy and effectiveness.
The primary objective of this study is to explore a hybrid deep network that integrates multimodal data, such as texture and
color attributes, as well as image color modes, to accurately detect the presence of mildew on mulberry branches. The proposed
framework incorporates a Convolutional Neural Network (CNN) and Gated Recurrent Units (GRU). Various color modes were
utilized, including grayscale, RGB (Red-Green-Blue), HSV (Hue-Saturation-Value), and CMYK (Cyan-Magenta-Yellow-
Black). The traits based on RGB consist of nineteen vegetation color indices (VIs) and six texture variables obtained from the
gray-level co-occurrence matrix (GLCM). The outcomes demonstrated that the CNNyyvrk-GRU; network effectively integrates
CMYK image data and color-texture features for tracking mulberry branch health during aeroponic propagation. It achieved a
validation accuracy (Ac) of 99.50%, with classification precision (Pr), recall (Re), and F-measure (Fm) at the same level.
Additionally, it obtained an intersection over union (IoU) of 98.90% and a loss value of 0.034. This network exhibited superior
performance compared to the model that relied solely on individual image attributes, surpassing other deep networks such as
Vision Transformers (Ac=94.80%), Swin Transformers (Ac=89.80%), and Multi-Layer Perceptrons (Ac=88.30%). Thus, the
proposed methodology is capable of precisely assessing the health of mulberry shoots, enabling the swift deployment of
intelligent aeroponic systems. Furthermore, adapting the developed model for mobile platforms could enhance its accessibility

and promote sustainable, efficient agricultural practices.
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1 Introduction

Mulberry, a key species in sericulture ecology, plays a vital role
in the success of sericulture, which is a major part of agriculture
worldwide!. However, pests and diseases, responsible for up to
40% of global food production losses, pose a threat to food
security?. Despite the positive impact of pesticides on food
production since the 1950s, they have harmful effects on both
human health and the environment®*. Climate change and
environmental stress also endanger soils and crops, disrupting soil
biodiversity and ecosystem services, while traditional farming
practices degrade soil health and long-term productivity®. To
address challenges in soil-based farming,
hydroponics, substrate cultivation, and aeroponics have emerged as
sustainable alternatives. These methods reduce water and fertilizer

innovations like

use and offer solutions to issues like soil pollution from heavy
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metals, showing potential for rapid progress in agriculture!™*.
Acroponics rapid propagation technology has emerged as a
solution for breeding seedlings. It delivers nutrients and supports
plant propagation by distributing a nutrient solution through
This technique incorporates reproduction,
transmitting desirable traits from the mother tree to its offspring. By
reducing dependency on high-quality seeds, aeroponics enables
rapid growth and development, shortening the breeding cycle!”.
The success of plant growth in rapid propagation via aeroponics is
strongly influenced by humidity levels within the systems!'"'".

nozzles®. asexual

Humidity fluctuations can affect plant growth, impair physiological
functions, and increase susceptibility to diseases like mildew!*',
potentially disrupting water uptake and overall growth. While
traditional disease detection depends on expert observation,
continuous monitoring is essential, as experience-based judgments
may lead to misdiagnoses. In this light, the present work develops
image-based methodologies for monitoring branch infections in
aeroponically cultivated mulberries. High-resolution plant images
are captured via advanced digital imaging techniques, processed
through algorithms to identify potential stress or disease markers!"”..
These methods utilize differences in color, texture, and shape, each
of which may signal specific health issues in plants"®. Digital
imaging is a cost-effective, straightforward, and rapid solution”'*.
In contrast, direct methods like spectral analysis or chlorophyll
measurement, while reliable for plant health evaluation, often
require expensive, specialized equipment, destructive sampling, and
are less suited for large-scale monitoring™. Furthermore, such
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techniques demand expertise in both data acquisition and analysis™.
By integrating artificial intelligence (Al), these techniques can
detect subtle signs of disease that might otherwise go unnoticed,
enabling the early identification of plant health problems!”.

The effective and accurate identification of diseases in
mulberry branches cultivated aeroponically through AI depends on
the consideration of several crucial factors. These encompass the
selection of an optimal color space for image representation, the
application of RGB vegetation indices (VIs) for advanced color
analysis, the incorporation of texture descriptors derived from the
gray level co-occurrence matrix (GLCM), the implementation of
data augmentation strategies, and the integration of multiple deep
learning (DL) networks. These considerations are vital for the
development of an effective framework for precise disease
identification in mulberry branches. Elsherbiny et al.?” compared
various image color modes, including CMYK (cyan-magenta-
yellow-black), HSV (hue-saturation-value), RGB (red-green-blue),
and grayscale, through deep networks to diagnose water status in
wheat crops with IoT-based multimodal data. The findings
demonstrated that deep neural networks relying on RGB images
outperformed other modes, emphasizing the importance of selecting
the right color mode for accurate plant condition assessment. The
success of a digital image-based framework depends on the
selection of handcrafted features, such as VIs and GLCM-based
texture characteristics. Research highlights a strong link between
plant diseases and the biochemical and physical changes in crops,
often resulting in noticeable color variations in leaves. Generally,
digital images are composed of pixels that merge the RGB color
channels. These channels empower the calculation of VIs®, which
serve as valuable indicators for various factors, comprising canopy
moisture content™™!, chlorophyll levels™), nitrogen content™, and
disease-related stresses®. RGB-based VlIs, characterized by high
sensitivity to subtle changes, facilitate efficient monitoring and
enable targeted management strategies to optimize growth and
boost crop yield®”. GLCM, a variant implemented with RGB
images, is applied to assess plant health. Mathew et al.’® utilized
GLCM for leaf symptom analysis and developed a composite voting
model combining decision trees, support vector machines (SVM),
and k-nearest neighbors (k-NN) for early disease detection. Bhimte
and Thool™ created an automated system for diagnosing cotton leaf
diseases by extracting color and texture features and applying SVM
for classification.

To address limited dataset sizes, data augmentation is vital.
Geometric transformations (resizing, cropping, rotation, horizontal
flipping) and intensity variations (contrast, brightness, color, noise)
are employed to boost the dataset’s diversity and size, ultimately
strengthening the model’s robustness and performance®™. In
addition, the integration of multiple deep networks, each
meticulously trained, has been instrumental in boosting both the
excellence and resilience of the expectation model. This
methodology, previously deployed to assess plant characteristics,
enhances model performance and precision. Jin et al.®" indicated
that a hybrid deep neural network combining 2D-Convolutional
Neural Networks (CNNs) and bidirectional Gated Recurrent Units
(GRUs) attained 0.74 accuracy in categorizing healthy and
Fusarium-infected wheat heads. Ullah et al.”” introduced a mixture
network with EfficientNetB3 and MobileNet for tomato disease
detection, showcasing strong feature extraction and reliable
automated detection.

Image classification and DL approaches provide solutions to
reduce mildew impact on mulberry branches and minimize pesticide

and fertilizer use. By enabling accurate and timely health
assessments, the implemented system has the potential to improve
the survivability and yield of aeroponically grown mulberry shoots.
Hence, the primary objectives of this research were: 1) to develop a
novel hybrid deep network that leverages multimodal data -
specifically, image data and characteristics derived from VIs and
GLCM - aiming to advance mulberry branch health management in
aeroponic cultivation; 2) to evaluate a range of deep networks, such
as CNN, GRU, and hybrid combinations of both, while deploying
different image color modes; 3) to identify top-level features of VIs
and GLCM to optimize model behavior; and 4) to delineate the
superior components of deep network architecture and enhance
model interpretability by highlighting regions of interest for robust
detection of health states in mulberry branches.

2 Materials and methods

2.1 Efficient aeroponic growth management system
2.1.1 System design overview

At Jiangsu University in Zhenjiang city, Jiangsu province,
China, an aeroponics experiment was undertaken to study the rapid
growth of mulberry branches. Figure 1 depicts the configuration of
the regulated system and its hardware constituents. The system
regulating humidity and temperature was composed of six
components: one module for gathering data, another for analyzing
data, an interface for human-machine interaction, a storage
component, a mechanism for execution, and a unit for data relay.
The system consisted of a central computer and a sensor for
measuring humidity and temperature. Every half second, the sensor
transmitted data to the computer, which then relayed it via a serial
link to the Synchronous Transport Mode-32 (STM32) device for
processing. If the mold growth rate stayed within acceptable limits,
the computer forwarded the data to the uCOS-III message queue for
subsequent calculations. The task associated with the Emergency
Managers Weather Information Network (EMWIN) used message
queue data to create live humidity and temperature visuals. When
mildew levels exceeded a set threshold, the STM32 device sent
commands to adjust the atomizing sheet’s spray frequency and
control the liquid pump. A touch-responsive TFT-LCD (thin-film
transistor liquid crystal display) on the human-machine interface,
powered by the uCOS-III platform, swiftly detected inputs and
executed commands. Among the components of the data storage
module were the SD card, STM32 FLASH, and the FatFs file
system, which seamlessly collaborated to facilitate efficient data
storage and retrieval. When activated, the system recorded humidity
and temperature readings in a file named “dataTH.txt,” with the SD
card automatically cleared each time the system was powered on.
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Cooling fan

Touch screen

Schematic depicting the composition of the controlled
system and its hardware components

Figure 1

In the FLASH memory of the STM32, there resided an array of
crucial data: the repository of system text, thresholds for
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temperature and humidity, rates defining mildew, intervals for
spraying, and duration of each spraying event. Within the actuator
module, an assemblage of elements was present, comprising a
cooling fan, liquid supply pump, power supply, fogging tablet,
lower computer relay, LED light board, and an alarm mechanism.
The serial port facilitated the transfer of actuator control data from
the STM32 to the STC89CS52 microcontroller within this
configuration. Upon receiving the data packet, the STC89C52
microcontroller decoded the contents to discern the necessary
actions, which were subsequently executed in accordance with the
provided specifications. Wireless communication was achieved by
employing the ZigBee serial transmission module, thereby
upgrading the conventional serial communication method.

2.1.2  System management operation

The operational mechanism was designed to operate in two
modes: user-controlled and automated. In a controlled greenhouse,
no heater was required due to natural temperature regulation. The
system monitors aeroponic growth, comparing real-time humidity
and temperature data to set reference points. When mold growth
remains within the expected range, it automatically adjusts the
cooler and atomizing sheet to maintain optimal conditions. During
the automated regulation period, the LED fill light remains on. If
the temperature exceeds the upper limit, the cooling fan activates to
cool the device and shuts off once the temperature returns to the set
range. A drop in temperature below the minimum triggers an alert
for greenhouse staff. The fogging system activates when humidity
falls below the threshold, operating until the maximum is reached,
then shuts off. Rising mildew levels prompt the system to adjust
cooling, misting, and water pumping to maintain optimal
conditions.

The operational setup empowers the handler with precise
control over each actuator, all of which begin in an off state. These
actuators include the ventilation fan, fluid pump, misting panel, and
fill light. Users can manually activate the pump to refill the nutrient
reservoir based on mildew levels. The ventilation fan allows for
manual temperature regulation, while the light’s brightness can be
adjusted. For the misting panel, users can set the spray duration and
break intervals, with the system operating for 2 minutes followed by
a 1-minute pause.

2.2 Data collection

The experiment was carried out on healthy mulberry cuttings,
aged 1-2 years, characterized by strong metabolism, high energy,
and rapid root development. Segments, 15-20 cm in length and
containing 2-4 buds, were taken from the central and lower portions
of the cuttings. These were disinfected in a potassium permanganate
solution for 30 min, rinsed, and dried. The cuttings were then
soaked in a rooting powder solution for 2-3 h, ensuring the base was
immersed approximately 3 cm. Before placing the cuttings in a
multi-layered incubator, any additional moisture was taken off. The
incubator was designed with four distinct sections: a layer
specifically for nutrient delivery, an area reserved for the plants, a
segment with a misting sheet, and an illumination-focused light
layer. In a span of 10 to 15 days, the cuttings displayed prominent
callus growth and developed new roots. The incubator housed 24
mulberry branches (Figure 2), from which 20 samples were chosen
due to their appropriateness for the study. Of these, 10 were healthy,
while the other 10 displayed signs of mildew infection. Images of
these branches were systematically taken every two days for a total
of 40 days, leading to the creation of 21 separate image sets,
summing up to 420 images. Captured under various lighting
conditions, these images mainly concentrated on the detection and

analysis of mildew, the disease being studied. The RGB images,
oriented perpendicularly, were captured and saved in JPEG format,
with a spatial resolution of 1080%1920 pixels, and were specifically
focused on branches at a height of 20 cm.

e N
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Figure 2 Healthy and mildew-infected branches in
aeroponic incubator

2.3 Color image mode

Color features can be derived by converting images into
different color spaces, such as CMYK, RGB, HSV, and grayscale®.
These transformed color representations yield valuable insights for
analysis and application. The CMYK relies on the combination of
four ink colors - cyan, magenta, yellow, and black - and is
extensively utilized in the printing industry to reproduce full-color
images. The RGB blends red, green, and blue light in various
proportions, enabling the creation of a wide spectrum of colors. The
HSV serves as a framework for color representation within the
cylindrical coordinate system. It represents colors through three
components: hue (type of color), saturation (vibrancy), and value
(brightness). Grayscale images are composed of shades of gray,
varying from black to white. Such color features underwent
thorough scrutiny to identify the optimal input for the models.
2.4 Image preprocessing

This process consists of three stages: 1) segmenting the image
to eliminate the background, 2) augmenting the data to increase the
size of the training dataset, and 3) transforming the features by
rescaling them through normalization. To precisely assess the
branch’s health, it must be isolated from the background through
thresholding, then converted to grayscale and segmented into a
binary image®". There are two potential pixel values: pixels with
intensity values greater than or equal to the threshold value of 1
represent the foreground (white), while pixels with intensity values
lower than or equal to the threshold value of O signify the
background (black) and can be discarded. Afterward, data
augmentation (Figure 3) enhanced learning by expanding the
dataset to 4200 images and improving object differentiation under
varied real-world conditions. Potential color VIs and GLCM
features were also extracted for further analysis. Finally,
normalization was applied to individual attributes (4) to account for
variations in magnitude among different features. To standardize the
characteristics (4,), a computation was conducted by deducting the
lowest image data point (4,,;,) and subsequently dividing it by the
range between the highest (4,,,) and lowest feature values, as
delineated in the following equation:

A-Ann

A, = LT Awin 1
! Amax _Amin ( )
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Original image Shearing (0.2)

Zooming (0.2)

Rotation (90°) Horizontal flip

Vertical flip

Brightness (0.8, 1.2)

Channel shift (0.2) Width shifting (0.01) Height shifting (0.01)

Note: The numbers in parentheses represent the parameters for each transformation, indicating the degree or intensity of the modification applied to the image.

Figure 3 Augmented RGB images of healthy branches

2.5 Feature extraction
2.5.1 Color RGB vegetation indices

VIs were integrated into RGB-based multimodal data to detect
color shifts indicative of mulberry branch health, capturing
variations in pigmentation, chlorophyll levels, and physiological
changes related to infections like mildew. The relevant indices
(Table 1) are capable of revealing subtle differences not discernible
in raw images. By tracking shifts in plant coloration, VIs offer a
quantitative gauge of mildew infection severity, which likely
correlates with its progression, providing valuable insights for
timely and effective disease management™. As outlined in Table 1,
nineteen VIs were designated for their proven efficacy in
characterizing plant health through RGB color spaces. These indices
primarily focus on subtle variations in the red (r), green (g), and
blue (b) bands, which are highly sensitive to changes in plant
pigmentation and stress responses. To ensure accurate disease
diagnosis, RGB color space percentages were extracted as sample
features. The mean values of the RGB channels (r, g, b) were
computed for each sample, forming the basis for deriving the 19
VIs. The derived indices were then utilized as input features for
various DL models. The interaction between RGB color data and
multimodal features was instrumental, as the VIs effectively
correlated color variations with the plants’ physiological condition.
This integration markedly enhanced the model’s capacity to predict
infection severity with high precision. As highlighted by Zhu et
al.’! Peng et al.””), and Elsherbiny et al.l'”); the fusion of multimodal
data has the potential to significantly enhance predictive accuracy in
precision agriculture.
2.5.2 GLCM-based texture features

GLCM, known as grayscale correlation-based texture analysis,
examines the connection between two pixels in an image at a
defined distance. It derives texture features of mulberry branches by
employing probabilistic attributes. In this work, six variations of
GLCM were utilized, including dissimilarity (Di), contrast (Co),
homogeneity (Ho), energy (En), correlation (Cor), and angular
second moment (ASM). Di measures pixel pair distance, Co reflects
image depth and texture, Ho indicates pixel value similarity, En
assesses texture uniformity, Cor evaluates pixel association, and
ASM describes image roughness and texture distribution. Hall-
Beyer®™ outlined an explanation of the RGB-based GLCM
variables. The probabilities associated with specific pixel value
combinations, denoted as P, ;, are calculated using row index 7 and
column index j. The mean values for indices i and j are denoted as

p; and p;, respectively. The standard deviations for values
associated with the i/ and j indices are given as o; and o,
respectively. The variable N represents the total number of rows or
columns.

levels—1

Di= Y P, li-j 2)

i,j=0
vt
Co= Y P,i-j) 3)
i,j=0
Ho = lz[:] Py @)
1+G—j)

i,j=0

Table 1 Explanation of the VIs derived from RGB images

Category of indices Equation Citations
Normalized blue (bn) b/(r+g+b) [38]
Normalized green (gn) g/(r+g+b) [38]
Normalized red (rn) r/(r+g+b) [38]
Red-blue ratio (RBRI) r/b [39]
Green-blue ratio (GBRI) g/b [40]
Green-red ratio (GRRI) g/r [41]
Woebbecke (WT) (g-b)/(r—g) [42]
Kawashima (IKAW) (r=b)/(r+b) [43]
Normalized difference
(NDI) (rn—gn)/(rn+gn+0.01) [44]
Green-red vegetation
(GRS (g-0/(g+1) [43]
Excess blue vegetation
(ExB) 1.4xbn—gn [45]
Excess green vegetation e
(ExG) 2xgn—rn—bn [45]
Excess red vegetation
(ExR) 1.4xrm—gn [45]
Visible atmospheric
resistance (VARI) (g-n/(g+r-b) [46]
Vegetative (VEG) g/(taxb(l—a)),a=0.667 [47]
Principal component _ _ _
analysis (IPCA) 0.994 X |r—b|+0.961 x|g—b|+0.914x |g—1| [48]
Color index of _
vegetation (CIVE) 0.441xr-0.881 xg+0.385xb+18.78745 [49]
Excess green minus
excess red (ExGR) ExG -ExR [45]
Lo 0.25XExG + 0.3 x ExXGR + 0.33 x CIVE+
Combination (COM) [50]

0.12x VEG
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levels—1

ASM= )" P, (5)

i,j=0

En= VASM (6)
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2.6 Superior feature selection based on SelectKBest with the
Decision Tree Classifier

Feature selection streamlines the dataset by preserving essential
features, addressing challenges such as computational burden and
overfitting arising from the curse of dimensionality®”. This research
utilizes the SelectKBest approach with ANOVA F-value scores to
prioritize features according to their relevance in forecasting the
target variable®™. The introduced approach combines feature
selection with hyperparameter tuning for the Decision Tree
Classifier (DT). By doing so, the model’s parameters are fine-tuned
for the selected feature subset, producing a model that is both
efficient and accurate. The process of constructing decision trees
from training datasets is termed as decision tree induction. These
trees, resembling flowcharts, comprise root, decision, and leaf
nodes: the root initiates the tree, decision nodes guide the path
based on data attributes, and leaf nodes signify the final outcomes.
During training, parameters like maximum depth (Md) were
considered with values (2, 4, 6, 8, 10), minimum samples leaf (Ms)
with (1, 2, 3, 4, 5), and maximum leaf nodes (MLn) with (2, 4, 6, 8,
10). The DT model exploited multimodal inputs, consisting of 19
VIs and 6 GLCMs, for enhanced feature selection. It assessed
various quantities of selected features (k) through a pipeline
integrating SelectKBest with a DT model. Within this setup,
GridSearchCV identified the most fitting hyperparameters for the
classifier, emphasizing the top & features based on accuracy. Figure 4
illustrates the fundamental steps involved in training the DT model,
fine-tuning hyperparameters, and structuring features.

A feature selection approach using SelectKBest and DT

Import necessary libraries
Load data:
l Read the Excel file.
Proposed features (X) and target labels (Y).
Initialize a dictionary to store results:
k (number of features selected).
Parameters of the decision tree.
Avg. and Std. of training and test scores.
Selected feature names and their percentage scores.
Define a parameter grid for the decision tree:
Max_depth.
Min_samples_leaf.
Max_leaf nodes.
Loop through each possiblek value:
Create a pipeline consisting of:
Feature selection using SelectKBest.
l Decision tree classifier.
Perform grid search with 5-fold cross-validation:
l Fit the pipeline to the data.
evaluate the performance.
Extract results from GridSearchCV:
Best parameters for the decision tree.
Avg. and Std. of training and test scores.
Selected feature names and their scores.
Calculate feature scores as a percentage.
Find the iteration with the highest mean test score :
Identify the index of the iteration.
Extract and print details such as:
Best £.
Hyperparameters of the best decision tree.
Mean training and test scores.
Selected feature names for this iteration.

End

Figure 4 Pseudo-code for training a decision tree with
SelectKBest for selecting top variables

2.7 Proposed deep networks
2.7.1 Convolutional Neural Network (CNN)

The CNN holds the predominant position as a deep learning
architecture for processing input data with two spatial dimensions.
It follows a structure denoted by /,xw;xC,, where h, represents the
height, w; denotes the width, and C, signifies the number of
channels within the image. This network was fed with images in
various color spaces (grayscale, CMYK, RGB, HSV). These images
had corresponding values for the number of channels, with C, being
equal to 1, 4, 3, and 3 bands. As stated by Kamilaris and Prenafeta-
Boldu®™, the CNN is widely recognized as the leading model in
computer vision applications and has gained increasing significance
in the field of agriculture. CNN models generally consist of three
distinct layers in their architectural composition. The input layer
serves as the primary data source, receiving multimodal inputs such
as image data and 8 significant features chosen by the DT model.
The hidden layers include components such as convolution, batch
normalization, ReLU activation, max-pooling, and flattening. The
output layer, through full connectivity, transforms the inputs from
preceding layers into two separate categories: healthy branches and
mildew-infected branches.

The CNN structure is depicted in Figure 5, whereas Table 2
outlines the key features of each layer within the CNN.
Convolutional layers extract features from image slices using filters,
enabling multiple transformations. These filters are customized to
the input slices and undergo nonlinear processing to learn abstract
features and introduce nonlinearity in the feature space™. Nonlinear
processing generates different activation patterns, aiding in learning
semantic differences across the dataset. To address covariate shift
and normalize gradients during training, batch normalization layers
are incorporated”™. Pooling mechanisms decrease output complexity
via max-pooling, capturing utmost essential attributes. The pool
sizes chosen for optimal VI-GLCM features are (1,2), while for
images, the selected pool size is (2,2). Training the CNN involves
utilizing an Adam optimizer, a momentum value of 0.9000, a
learning rate of 0.001, 350 epochs, and a batch size of 70. The
output of the pooling layer is flattened into a 1D vector since
subsequent dense layers only accept 1D vectors. The ultimate
densely connected stages function as categorizers and utilize the
softmax formula. These layers contain a limited number of neurons
that receive input from a vector a'""' and produce a vector
outputa', specifically for the jth node of the ith layer. The weights
w; , With n,_xn, parameters, represent the learned factors in the /th
layer. Moreover, the bias of the layer is denoted as b, and the
activation function is represented by y!.

niy

i _ i, sl plil _y i il (i

% —E :Wﬂ'al +b)' > dl =y (2] (®)
=1

2.7.2  Gated Recurrent Units (GRU)

GRU is a specific type of Recurrent Neural Network (RNN)
architecture designed to overcome certain limitations of traditional
RNN:G. It plays a crucial role in effectively handling time-series and
nonlinear data®>®. The architecture of this network comprises an
input layer denoted as x, a hidden layer represented as 4, and an
output layer labeled as y. The output layer and hidden layer can be
computed via the following formula:

Yt =g'(Sr'vVh,\‘) (9)

S, =f X -Wsx+8 - Wss) (10)
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Figure 5 Comprehensive architecture of the CNN model

Table 2 Advanced layered design for the proposed CNN

Layer Type Input size :
Image Superior features

0 Input data (50x50%xC,) (1x8x1)

1 Conv2D (50x50%C,) (1x8x1)

2 Batch Normalization (50%50%512) (1x8x512)
3 ReLU (50x50%512) (1x8x512)
4 MaxPooling2D (50x50%512) (1x8x512)
5 Conv2D (25%25%512) (1x8%x512)
6 Batch Normalization (25%25%256) (1x8%256)
7 ReLU (25%25%256) (1x8%256)
8 MaxPooling2D (25%25%256) (1x8%256)
9 Conv2D (12x12x256) (1x8%256)
10 Batch Normalization (12x12x128) (1x8x128)
11 ReLU (12x12x128) (1x8x128)
12 MaxPooling2D (12x12x128) (1x8x128)
13 Flatten (6x6x128) (1x8x128)

In this work, the GRU model was evaluated for branch health
detection, utilizing image data and first-level characteristics. The
model’s architecture is detailed in Table 3. To enhance prediction
accuracy, it is crucial to incorporate various multimodal data,
including images and 8 VIs-GLCM features extracted at different
time intervals within the same quadrat. The model’s process,
depicted in Figure 6, involves the deployment of the previous output
(h.y) and the current input (x,). The reset gate determines the
portion of information to be reset. The update gate is responsible for
updating the GRU output. The candidate hidden layer is processed
to yield the current output. Throughout the training process, the
GRU gates (Z, and r,) and parameters (W, W,, and W) are updated.

Z=0-(Wz-[h, X)) (11)
r,=0-(Wr-[h_,X]) (12)
h: =tanh-(W'[V,th71,Xx]) (13)

2.7.3 Advanced multimodal data-driven classification model

This study aimed to explore the top-selected features based on
SelectKBest and DT model. Moreover, it sought to investigate the
influence of multimodal variables on the performance of CNN and
GRU models. The most successful hybrid model, depicted in
Figure 7, was composed of two models: CNNqyyk and GRUg
which operate different multimodal traits. These properties, mined
from various origins, include F1 (CNNyyk-related features derived
from images) and F2 (GRUpbased multimodal characteristics

obtained from VI-GLCM). By integrating these diverse attributes,
the hybrid model demonstrated robustness and achieved high accur-
acy in the classification of healthy conditions of mulberry branches.

Table 3 The deep network architecture proposed for the

GRU model
Input size
Layer Type X
Image Superior features
0 Input data (2500xC,) (8x1)
1 GRU (2500%xC,) (8x1)
2 Dropout (2500%x64) (8%64)
3 GRU (2500%x64) (8%64)
4 Dropout (2500%128) (8x128)
5 GRU (2500%128) (8x128)

Reset
state state

Candidat:a for
a hidden state

Figure 6 Configuration of GRU architecture

X

2.8 Processing of data and software tools

The dataset consists of 4200 images of mulberry branches,
divided into two groups: 2100 images of healthy branches and 2100
of those infected with mildew. For model training, 80% of the data
(3360 images) was applied, and the remaining 20% (840 images)
served for evaluating the model’s performance. The process of
creating the model and analyzing the data took place on the Kaggle
platform, which offers complimentary utilization of NVidia K80
GPUs within kernels. To accelerate the training of the proposed
deep learning model, the GPU available on the Kaggle platform was
utilized, resulting in a significant 12.5X speedup in kernel
performance. The data analysis was performed on a PC with an
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Intel Core 17-3630QM CPU running at 2.4 GHz and 8 GB of RAM.
For the classification task, TensorFlow library version 2.4.1 was

employed, and both CNN and GRU modules were utilized. The
implementation was conducted entirely with Python version 3.7.10.

RGB branch images
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Figure 7 Configuring an optimal deep network architecture through multimodal data for detecting the health state of mulberry branches

2.9 Evaluation of detection performance

The performance evaluation of the proposed deep networks
comprised a quantitative assessment based on measures like recall
(Re), precision (Pr), intersection over union (IoU), overall accuracy
(Ac), and F-measure (Fm). These measures were computed relied
on the number of true-positives (TP), true-negatives (TN), false-
positives (FP), and false-negatives (FN), thus providing a
comprehensive evaluation of the networks’ performance. The
calculations for these measures are as follows:

Re = x 100 (14)
ZFP+ZTN
Y
Pr= x 100 (15)
ZFP+ZTP
TP
IoU = mxloo (16)

> TP+ TN

Ac = x 100 (17)
ZFP+ZFN+ZTP+ZTN
Re x Pr
Fm_2><Re+Pr><100 (18)

3 Results and discussion

3.1 Automated feature selection and hyper-parameter tuning
through DT Model

As illustrated in Figure 8, the most relevant VIs and GLCM
characteristics identified in each DT training iteration through
SelectKBest are presented. The figure underscores the significance
of various features across cycles, particularly RGB-derived VIs and
GLCM-based textures. The VIs of highest importance are gn and
COM, exhibiting importances of 49.99% and 50.01%, respectively.
In contrast, the fine-grained GLCM traits - Co, En, Ho, Cor, Di, and
ASM - have importances of 1.09%, 61.15%, 0.57%, 37.78%,
1.02%, and 63.11%, respectively. Table 4 details the performance
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metrics for the DT model, covering the mean accuracy score from
different cross-validation folds along with the standard deviation
(SD) of these scores. The tuned hyperparameters for the DT model,
specifically Md, Ms, and MLn, were ascertained. The DT model
exhibited the highest efficacy when deploying traits from two VIs in
the 18th iteration and six GLCMs in the first. The incorporation of
two VIs enhanced the model’s performance to a score of 0.790,
surpassing the 0.770 achieved with 19 VIs. Additionally, the

'] 100
|
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ExGR
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m
RBRI
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NDI
WI
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VEG
GRVI
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RGB-derived VIs
Feature importance/%

1 35 7 91113151719
Number of suggested VIs per cycle

integration of six GLCM features significantly augmented the
model’s discriminative power, yielding a score of 0.667. This
outstripped the performance of the feature sets labeled 1 through 5,
with respective scores of 0.536, 0.594, 0.595, 0.614, and 0.612.
These findings are consistent with Gaagai et al.*”, who emphasized
the influence of two crucial factors on the behavior of machine
learning (ML) models: the training-based filtering of semantic
features and the selection of upper hyperparameters.

100
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. A60
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GLCM-derived texture characteristics

Dissimilarity

1 2 3 4 5 6
Number of suggested GLCMs per cycle

Figure 8 Assessment of feature importance for GLCM-derived texture and RGB color across various selection sizes

Table 4 Comparative analysis of DT performance with high-
level RGB-based traits and GLCM variables under optimal
hyperparameter configurations

RGB- Train Test

Hyperparameters .

based High-level features

traits  (Md> Ms, MLn) ey . Score SD Score SD
VI 2,1,2) gn, COM 0.805 0.025 0.790 0.091

GLCM (8,1,10) Co, En, Ho, Cor, Di, ASM 0.702 0.021 0.667 0.069

3.2 Integrated CNN models with multimodal characteristics
The CNN model exploited CMYK, RGB, HSV, and grayscale
color space images as input data for analysis. Furthermore, this
study appraised the effectiveness of the methodologies by
investigating multimodal attributes, merging VIs with GLCM
parameters while training the CNN model on image data. Table 5
summarizes a comparison of performance measures (Re, Pr, Fm,

and IoU) to assess CNN models’ efficacy in tracking branch health,
accounting for accuracy and loss in training and validation.
Incorporating the CMYK color space alongside multimodal features
led to a significant boost in accuracy. The hybrid CNNgyyr-CNN;
model unveiled superior performance (Re=0.979, Pr=0.979,
Fm=0.979, 10U=0.968) compared to the standalone CNNcpyx
model (Re=0.969, Pr=0.969, Fm=0.969, 10U=0.937), showcasing
exceptional classification capabilities. Moreover, in terms of
validation scores, the model accomplished an accuracy of 0.979 and
a loss of 0.051, outstripping the CNNgyyx model (Ac=0.969,
Ls=0.060). These outcomes align with Barbedo”, who emphasized
the potential of CNNs to extract high-level characteristics during
training, making them effective tools for addressing plant pathology
concerns. This highlights the significant role and effectiveness of
CNN s in modern agriculture and the management of plant diseases.

Table S Outputs of CNN models utilizing various color spaces and multimodal features

Training Validation Performance
Model Image f
Ac Ls Tt Ac Ls Tv Re Pr Fm TIoU
Gray - 1.0 8.365x10° 6.883 0.921 0.219 0.351 0.921 0.921 0.921 0.858
NNy, RGB No 1.0 2.944x10°¢ 7.474 0.966 0.086 0.325 0.966 0.966 0.966 0.940
HSV - 1.0 3.346x10° 5.719 0.938 0.208 0.261 0.938 0.938 0.938 0.885
CMYK - 1.0 8.927x10° 8.385 0.969 0.060 0.321 0.969 0.969 0.969 0.937
Grey - 1.0 1.212x10* 7.388 0.928 0.210 0.339 0.928 0.928 0.928 0.867
NNy -CNN; RGB Yes 1.0 3.359x10°¢ 7.150 0.973 0.059 0.390 0.973 0.973 0.973 0.951
HSV - 1.0 5.798x10° 7.239 0.957 0.131 0.407 0.957 0.957 0.957 0918
CMYK - 1.0 0.003 9.784 0.979 0.051 0.433 0.979 0.979 0.979 0.968

Note: Where Ls signifies the model loss, f refers to high-level multimodal characteristics of VIs and GLCM, Tt stands for the total training time (min), and Tv denotes the

duration required to conduct a single-sample test (sec).

3.3 Fusion of GRU models with multimodal features

The diverse features, comprising VIs and GLCM, were
simultaneously appraised during image training, considering them
as multimodal traits, and were fed into the GRU models. Table 6
displays the marks related to performance metrics such as Re, Pr,
Fm, and IoU. It also delineates the training and validation outcomes

through metrics like Ls and Ac. The HSV-based GRU model
outperformed other color image modes. Trained solely on image
data, it achieved the following performance metrics: Re (0.561), Pr
(0.321), Fm (0.412), IoU (0.400), and Ac (0.561) with a loss of
0.667. Meanwhile, the combined GRUys,-GRU; model slightly
outperformed the HSV image-based model in identifying healthy
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mulberry stems. Its performance scores encompassed a Re of 0.653,
a Pr of 0.429, an Fm of 0.501, and an IoU score of 0.494. During
validation, it attained an accuracy of 0.653 with a loss of 0.582.
These results correspond with those of Elsherbiny et al.”', who

explained the importance of conducting a thorough investigation
into deep network structures and feature selection. Such an
investigation is essential, as it greatly enhances overall performance
and produces better outcomes.

Table 6 Outputs of GRU models deploying distinct color spaces and multimodal properties

Training Validation Performance

Model Image f
Ac Ls Tt Ac Ls Tv Re Pr Fm IoU
Gray - 0.572 0.671 32.561 0.559 0.681 1.770 0.559 0.311 0.399 0.391
GRU RGB No 0.559 0.680 32.580 0.549 0.680 1.783 0.549 0.291 0.389 0.377
me HSV - 0.573 0.668 31.571 0.561 0.667 1.759 0.561 0.321 0.412 0.400
CMYK - 0.560 0.683 32.891 0.530 0.687 1.189 0.530 0.288 0.379 0.371
Gray - 0.635 0.609 32.855 0.620 0.621 1.690 0.620 0.395 0.471 0.462
RGB Yes 0.637 0.601 32.134 0.616 0.639 1.891 0.616 0.377 0.459 0.446

GRU, ,,-GRU;

HSV - 0.668 0.571 30.966 0.653 0.582 1.844 0.653 0.429 0.501 0.494
CMYK - 0.659 0.595 32.591 0.609 0.625 1.490 0.609 0.365 0.433 0.426

3.4 Hybrid deep network with multimodal characteristics
Through the fusion of CNN and GRU models, this study
successfully attained enhanced accuracy levels. The training
procedure incorporated diverse space images and RGB-based
multimodal features, including combinations of higher VIs and
GLCM traits. The results in terms of the performance metrics of the
hybrid deep network, including Re, Pr, Fm, and loU, as well as the
validation outputs of Ac and Ls, are presented in Table 7. The
hybrid deep network, incorporating both CNN and GRU models
with CMYK, exhibited outstanding performance compared to other
feature combinations. The integration of the CNN model alongside
CMYK color space processing and the GRU model utilizing
advanced VIs-GLCM  features demonstrated outstanding
performance across multiple metrics. It achieved impressive scores
in terms of Ac, Re, Pr, and Fm, all registering at an exceptional

value of 0.995. Additionally, the model attained a notably high loU
score of 0.989, while maintaining a minimal loss of 0.034. These
results underscore the model’s accuracy in making predictions and
its robust capability in localizing branch-infected mulberries. Due to
the well-designed framework'®", the first-level model, known as the
CNNevyk-GRU; model, surpassed those models that rely solely on
training images, like CNNj,,-GRU;,, (Ac=0.984, Re=0.984,
Pr=0.984, Fm=0.984, 1oU=0.977, and Ls=0.045). These findings
highlight the importance of the features integrated into this
combined network, demonstrating their capacity to appropriately
estimate the health of the mulberry branch. These outcomes are
similar to the findings of Jin et al.®", who combined CNN and GRU
models to classify healthy and diseased wheat heads based on
hyperspectral data, achieving a satisfactory accuracy level of 0.743,
exceeding the performance of single models.

Table 7 Outputs of the hybrid CNN-GRU model employing multiple color spaces and RGB-extracted variables

Training Validation Performance
Model Image f
Ac Ls Tt Ac Ls Tv Re Pr Fm IoU
Gray - 1.0 1.675%10* 38.582 0.912 0.260 1.933 0.912 0.912 0.912 0.839
RGB No 1.0 1.35x10° 37.989 0.970 0.116 1.929 0.970 0.970 0.970 0.939
CNN;p-GRUj g

- HSV - 1.0 8.761x10° 38.591 0.979 0.112 2.024 0.979 0.979 0.979 0.947

CMYK - 1.0 0.003 38.484 0.984 0.045 2.134 0.984 0.984 0.984 0.977

Gray - 1.0 2.316x10* 7.559 0.943 0.201 1.142 0.943 0.943 0.943 0.890

RGB Yes 1.0 8.581x10° 7.585 0.979 0.081 1.039 0.979 0.979 0.979 0.952

CNNjpe-GRU;

HSV - 1.0 6.971x10° 7.251 0.983 0.098 1.075 0.983 0.983 0.983 0.959

CMYK - 1.0 5.353x10° 7.088 0.995 0.034 1.065 0.995 0.995 0.995 0.989

3.5 Advanced model vs. current deep learning architectures
The performance of the top-tier hybrid network, as exemplified
in Figure 9, is benchmarked against the most recent advancements
in image classification technologies. Notably, this comprises Vision
Transformers (ViT) introduced by Dosovitskiy et al.’], Swin
Transformers (Swin) developed by Liu et al.l’l, and Multi-Layer
Perceptrons (MLPMixer) as proposed by Tolstikhin et al.*. The
comparative analysis presented in this study confirmed a significant
improvement in the proposed approach, attaining superior image
classification performance compared to earlier models. The planned
model consistently demonstrated better performance in terms of Ac
(99.5%), Re (99.5%), Pr (99.5%), Fm (99.5%), and ToU (98.9%)
compared to the ViT (0.948, 0.948, 0.948, 0.900), the Swin (0.898,
0.898, 0.899, 0.897), and the MLPMixer (0.883, 0.883, 0.895,
0.882, 0.791). The proposed framework utilizes multimodal
learning to integrate data from various sources, enabling effective

feature extraction and facilitating the development of more robust
models for informed agricultural decision-making'®".
3.6 Training curves of the deep networks

Numerous procedures have been undertaken to advance the
effectiveness of categorization algorithms:
characteristics of nominated advanced attributes during the training
of a specific deep learning model, 2) fine-tuning parameters,

1) analyzing the

3) thoroughly exploring components within the deep network
architecture, 4) considering different
5) integrating VIs with GLCM features, and 6) fusing various deep
learning models. Together, these endeavors have played a pivotal
role in advancing the learning curve of the higher-classification

image color spaces,

model, as depicted in Figure 10. It proves the amended performance
of the model by deploying upper variations mined from CMYK
color space images during the training and validation phases. These
specific attributes, coupled with RGB-extracted traits, exhibited a
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W= ViT s MLPMixer larger ability to evaluate the fitness status of branches compared to
I Swin [ Proposed model

other color space images. As illustrated in Figures 10a-10c, the
precision of both the instructional and verification datasets
consistently improved as the number of epochs increased.
Simultaneously, there was a steady decrease in the models’ loss,
interspersed with occasional increases followed by subsequent
decreases. Additionally, it was observed that the training accuracy
tended to surpass the validation accuracy. The advanced model,

E
é known as CNNcyyk-GRU;, demonstrated an outstanding learning
curve, as revealed in Figure 10b. The incorporation of two models
led to the successful establishment of the CNNgyyk-GRU; two-
stage model framework. It achieved excellent classification perfor-
mance, reaching 99.5% accuracy in terms of Re, Pr, and Fm, along
with IoU of 98.9% and Ls of 0.034. Compared to other models, the
CNN model based solely on image input (Figure 10a) achieved
Ac Re Pr  Fm ToU 96.9% for Ac, Re, Pr, and Fm, with 1oU=93.7% and Ls=0.060,
Metrics while the ViT model (Figure 10c) attained 94.8% for Ac, Re, Pr,
Figure 9 Evaluation of recent deep learning models in comparison and Fm, with [oU=90.0% and Ls=0.186. The implementation of the
with the proposed approach superior model aligns with the anticipated outcomes delineated by
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Figure 10 Performance assessment measures (accuracy and loss) of deep networks for mulberry branch health detection
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Wakamori et al®¥, who underscored that the adoption of
multimodal approaches markedly augments accuracy relative to
single-modal methods. Elmetwalli et al.*”’ validated the enhanced
performance as well, noting that the adoption of early stopping
during backpropagation training mitigated the risk of overfitting.
3.7 Confusion matrices and the interpretability of deep
networks

As shown in Figure 11, the confusion matrices showcase the
performance of the proposed CNNcpyk, hybrid CNNeyyx-GRUg,
and ViT models in identifying the health of mulberry twigs. In a
collection of 840 images, the first, second, and third models
exhibited approximately 30, 8, and 44 instances of misclassification,
respectively. This analysis indicated that the CNNyyx. GRU; model
revealed a marked reduction in misclassifications, repeatedly
exposing higher true-positive and true-negative rates, while
concurrently minimizing both false negatives and false positives. To
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In this study, the CNNgyyx-GRU; framework had superior
accuracy in diagnosing the health status of mulberry twigs.
Compared to prior research, the findings confirmed a higher level of
precision, particularly in contrast to the approach introduced by
Narimani et al.™, who developed an IoT-based system for
monitoring plant situations in an aeroponic greenhouse. The VGG-
19, InceptionResNetV2, and InceptionV3 algorithms were utilized
for Geranium plant disease detection. The outcomes disclosed that

facilitate a more in-depth analysis of these models, saliency map
visualizations were utilized to evaluate their interpretative
transparency. As exposed in Figure 12, the CNNgyyx model
produced a widely scattered distribution of high-activation regions,
suggesting that it relies on multiple features but lacks a clear focus
on disease-relevant areas. This could contribute to its moderate
misclassification rate. In contrast, the CNNgyyx-GRU; model
generated more centralized and structured activations, indicating
that the inclusion of GRU layers helped refine the model’s focus on
disease-prone regions, leading to a reduced misclassification rate.
Conversely, the ViT model, despite its ability to capture global
dependencies, exhibited a higher misclassification rate (44
instances) than the CNN¢yyx-GRU;. The saliency maps indicate
that while ViT provides better-distributed attention across the entire
twig, it might have struggled with distinguishing subtle textural
differences between healthy and unhealthy samples.

0.8
0.96 0.04
0.6

Healthy
©
=
2
& 0.4
Unhealthy d 0.97
0.2
Healthy Unhealthy
Predicted label
. CNN(',MYK
Healthy 0.8
©
§ 0.6
2
& 0.4
Unhealthy
0.2
Healthy Unhealthy
Predicted label
. CNN¢yx-GRU;
0.8
Healthy
©
§ 0.6
2
= 0.4
Unhealthy
0.2
Healthy Unhealthy
Predicted label
c. ViT

Confusion matrix for the assessment of mulberry branch health detection via the proposed models

the VGG-19 algorithm attained a 92% accuracy in categorizing rust
diseases in Geranium plants. Moreover, the methodology of this
study outperformed that of Kurup et al.”", who utilized capsule
networks for plant infection detection and leaf classification. With a
dataset of 54 306 images from 14 crop species, they realized 94%
accuracy for disease diagnosis and 85% for leaf classification with
2997 images from 11 species. Furthermore, the first-level model
excels beyond the methodology introduced by Karlekar and Seal™
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in terms of soybean disease identification accuracy. Their two-stage
approach involves extracting leaf components by eliminating
complex backgrounds, followed by the application of a CNN for
disease classification. In experiments conducted on the “Image
Database of Plant Disease Symptoms” which encompasses 16
categories, they achieved an exceptional identification accuracy of
98.14%. The observations detailed herein align with the broader

CNNewve

Input image

Healthy

Unhealthy

trend in agricultural research, which highlights the integration of
multiple data sources into dynamic models for more effective plant
status diagnosis™!, disease prediction”), and soil analysis”®. This
approach enhances agricultural decision-making, optimizes crop
management, and sets the stage for more efficient, data-driven

solutions in modern agriculture.

CNN gyy¢-GRU;,

Figure 12  Saliency map visualization for model interpretability, highlighting regions of interest and comparing feature maps of healthy and

unhealthy images across different models

This work contributes to the precision of detecting the health of
mulberry twigs, facilitating timely intervention. It aids in the
preservation of water and nutrients that might otherwise be
inefficiently expended on diseased plants, thereby promoting robust
root formation and increasing the efficiency of water absorption.
Diseases like mildew can disrupt water uptake, emphasizing the
necessity of this study’s advanced deep learning framework for
early detection of mildew presence on mulberry branches and the
implementation of targeted remedial actions. These actions may
involve adjusting water and nutrient supply””, optimizing plant
spatial arrangement to prevent pathogen transmission”, and
utilizing beneficial microbes or biostimulants to enhance plant
defenses™. The results demonstrated the effectiveness of this
innovative classification approach, potentially revolutionizing
aeroponic cultivation through automated disease diagnosis. This
advancement could lead to improvements in plant health, crop yield,
and overall sustainability, while also opening doors for broader
applications of deep learning and image analysis in agriculture,
heralding a new era in sustainable crop disease management.

3.8 Potential limitations and future outlook

Despite the promising outcomes established by the employed
methodology, several constraints within this framework remain,
which could be explored in future research endeavors. The current
experiments were confined to mulberry branches. Extending the
testing to other crops would significantly improve its applicability
in precision agriculture, particularly for automated detection. The
efficacy of the study strategy is contingent upon the incorporation
of fusion traits, particularly those derived from VIs and GLCM.
Given the inherent variability across datasets, incorporating
supplementary features (like environmental factors, for instance
temperature, humidity, light intensity, and carbon dioxide levels)
may be crucial to ensuring consistent accuracy across different
environments and crop types. Moreover, as the ensemble models
were established via specific ML approaches such as CNN and
GRU, exploring alternative configurations could yield valuable
insights. With the continuous emergence of novel models and
techniques such as transformer networks, periodic updates may be

essential to sustain predictive performance. Although executed
under controlled conditions, appraising the framework in semi-
controlled greenhouse environments across seasons would offer
crucial perspectives. Long-term trials of this nature could deepen
the understanding of its performance under a broader range of
operational conditions. Lastly, the robust framework of the
established model on the mulberry dataset indicates its potential for
adaptation to mobile platforms, such as smartphones or drones, for
real-time disease detection in the field. Developing a lightweight
version to lower computational demands while preserving accuracy
would enhance its viability for use in precision agriculture.

4 Conclusions

This study proposes a novel hybrid deep network for precise
mildew detection on aeroponically grown mulberry branches. The
model combines a Convolutional Neural Network (CNN) with
Gated Recurrent Units (GRU) and processes RGB images across a
variety of color channels. It is trained with multi-dimensional
attributes, including color-based vegetation indices (VIs) and
texture features from the gray-level co-occurrence matrix (GLCM).
The experimental outcomes demonstrated that the hybrid deep
network (CNNeyyk-GRUy), which combined CMYK and advanced
VIs-GLCM features, outperformed competing models. This model
attained an impressive validation accuracy (Ac) of 99.50% with a
corresponding loss (Ls) of 0.034. In contrast, the standalone
CNNepvyg model attained Ac of 0.969 and Ls of 0.060. The
GRUcyyk model, trained solely on image data, exhibited
significantly inferior performance (Ac=0.530, Ls=0.687).

The suggested framework enhances model performance
through optimal feature selection, architecture exploration,
hyperparameter tuning, and multimodal data integration. This
approach leads to efficient, nondestructive detection of branch
infections in mulberry trees, enabling timely interventions and
promoting tree recovery without labor-intensive processes. Beyond
application in mulberry cultivation, the advanced hybrid deep
network presents significant potential for broader use across
agricultural sectors. The ability to detect plant diseases early with
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high accuracy could streamline disease management protocols,
reduce the need for chemical treatments, and promote sustainable
agricultural practices. Moreover, this methodology could be adapted
to detect a wider range of plant pathogens (such as rusts, blights,
and molds) across various crops. In the future, integrating this
model into real-time monitoring systems could provide farmers with
accessible, accurate, and cost-effective diagnostic  tools,
contributing to improved food security and global agricultural
productivity.
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