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Abstract: Path planning for field agricultural robots must satisfy several criteria: establishing feeding routes, maintaining
gentle slopes, approaching multiple livestock observation points, ensuring timely environmental monitoring, and achieving high
efficiency. The complex terrain of outdoor farming areas poses a challenge. Traditional A* algorithms, which generate only the
shortest path, fail to meet these requirements and often produce paths that lack smoothness. Therefore, identifying the most
suitable path, rather than merely the shortest one, is essential. This study introduced a path-planning algorithm tailored to field-
based livestock farming environments, building upon the traditional A* algorithm. It constructed a digital elevation model,
integrated an artificial potential field for evaluating multiple target points, calculated terrain slope, optimized the search
neighborhood based on robot traversability, and employed Bézier curve segmentation for path optimization. This method
segmented the path into multiple curves by evaluating the slopes of the lines connecting adjacent nodes, ensuring a smoother
and more efficient route. The experimental results demonstrate its superiority to traditional A*, ensuring paths near multiple
target points, significantly reducing the search space, and resulting in over 69.4% faster search speeds. Bézier curve
segmentation delivers smoother paths conforming to robot trajectories.
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1 Introduction

Animal
predominant livestock production model in the context of smart
farming. The objective of welfare farming for farm animals is to
address the conflict between animal welfare and high-efficiency
farming, supporting a reduction in production intensity and the
promotion of intensive farming practices while creating added value
for both animals and consumers!". Intensive farming, a globally
prevalent agricultural production method, effectively meets the
increasing human demand for meat, eggs, and dairy products.
However, the living conditions and health of farm animals under
this farming model have been severely neglected, resulting in
comparatively lower meat quality when contrasted with semi-
intensive farming practices".

Semi-intensive farming, typically conducted in unstructured
outdoor conditions, aims to provide animals with a free and

welfare farming is gradually emerging as the

comfortable growth environment. Nonetheless, large-scale
unstructured farming places a significant labor demand. Data from
2017 shows that the proportion of agricultural labor participation in
the United States, Japan, Germany, and Russia was 1.66%, 1.28%,
3.49%, and 6.70%, respectively®. This trend has been consistently
decreasing year by year, indicating that agricultural labor is on a
declining trajectory. The need for ‘“automation” is steadily

increasing. In recent years, with the rapid advancement of next-
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generation information technologies such as the Internet of
Things®, big data”, artificial intelligent
equipment manufacturing'”, these technologies have been widely

intelligence, and
applied across various
Consequently,
information

aspects of agricultural

modern smart farms can achieve end-to-end
sensing, quantitative decision-making, intelligent
control, precision inputs, and personalized services for agricultural
production and management'‘.

production.

The development of mobile robots for field-based livestock
farming can fundamentally address issues such as labor shortages,
high labor intensity, low efficiency, and the need to monitor
multiple target points. Currently, there is considerable research
focused on mobile robots for intensive livestock housing, including
facilities such as cattle barns, sheep pens, and poultry houses.
Notable examples include the “Poultry Patrol” developed in 2019,
which is an autonomous robot that uses thermal infrared cameras to
detect diseased or dead birds. It is equipped with visible light
cameras and a rotary cultivator, providing features like remote
monitoring, video recording, and litter management. By automating
the detection and handling of dead poultry, the Poultry Patrol
enhances detection efficiency and reduces human contact with
deceased birds, thereby lowering the risk of disease transmission,
improving animal welfare, and enhancing farm management safety.
Additionally, these robots provide monitoring,
significantly reducing the frequency of manual inspections and

continuous
labor costs!'". Another remarkable development is “ChickenBoy”
(2021), which is the world’s first autonomous monitoring robot
suspended from the ceiling, developed by the Spanish company
FAROMATICS. It is equipped with temperature, humidity, carbon
dioxide, and wind speed sensors, enabling extensive monitoring of
the poultry house environment. Additionally, it employs a set of
cameras (infrared and visible light cameras) to monitor dead birds
and water dispensers and notifies the caretakers through mobile
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alerts. This round-the-clock automated monitoring significantly
lowers labor costs and enhances the precision of coop management,
thereby boosting production efficiency and animal welfare. Farmers
have reported notable improvements in coop environments, more
stable poultry health, and a roughly 15% increase in production
efficiency following the deployment of “ChickenBoy”".
Furthermore, Feng and Wang have developed a robot composed of
an autonomous navigation vehicle, a spraying unit, an information
monitoring unit, and a control unit When operating autonomously,
this robot is capable of inspecting and disinfecting the environment.
The precise disinfection capability of this robot helps prevent
disease spread, thereby improving animal health. In practical
applications, this robot has increased disinfection efficiency by 50%
and significantly reduced the incidence of disease outbreaks™.

These advancements in mobile robot technology for livestock
farming are significant steps toward addressing labor-related
challenges and improving efficiency while enhancing animal
welfare and farm management.

The research on the mentioned robots primarily focuses on
intensive farming conditions. Semi-intensive farming, on the other
hand, typically encompasses free-range farms with undulating
terrain. These farms have a larger livestock area, necessitating the
monitoring of both animals and the environment, as well as the
provision of supplemental feeding, all of which demand significant
labor input. The importance of path planning lies in its ability to
assist robots in effectively navigating terrain obstacles and farm
facilities. This enhances the efficiency of monitoring and feeding
operations, reduces human labor requirements, and ensures optimal
health and growth environments for livestock. Therefore, path
planning algorithms tailored for semi-intensive farming are crucial
for addressing labor shortages and improving farm efficiency.

In semi-intensive farming environments, there is currently a
lack of path-planning solutions specifically designed for robots.
This remains a challenging area due to the expansive terrain and
variable topography typical of these farms, whereas existing path
planning technologies are predominantly tailored for the structured
environments of intensive farming operations. Mobile robots
designed for use in intensive conditions typically rely on magnetic
strips or guided tracks for path planning and are ill-suited for
unstructured field-based livestock farming environments. In
traditional vertex inspection processes, the shortest path between
two points is typically used for path planning. However, in the free-
range activity areas of livestock, animal behavior patterns often lack
clear regularity. Therefore, path planning should prioritize
proximity to the animals’ activity areas to effectively monitor their
growth environment and health status. Additionally, to improve the
efficiency of feed supplementation, the feeding path should also
closely follow the livestock activity areas. At the same time, to
avoid causing unnecessary disturbance to the animals, mobile robots
should maintain a certain distance while performing tasks, ensuring
normal animal activities.

The current challenges of labor shortages and efficiency
demands in agriculture have placed enormous pressure on semi-
intensive farms, necessitating the development of more intelligent
path-planning algorithms. The key challenge in path planning for
field-based livestock farming robots lies in dealing with
unstructured environments and the multi-target planning problem
involving both environmental and livestock observation. Research
in this area predominantly focuses on algorithm development. Wu
et al.'" improved the evaluation function and designed a path
optimization algorithm that considers slope and roughness

constraints by studying the comprehensive impact of terrain slope
and surface properties on vehicle path planning. Ji et al."*’ employed
a method for random sampling path planning based on off-road
terrain information and constructed an evaluation function for off-
road path planning in an autonomous vehicle context. Tian et al.'
employed the artificial potential field algorithm to model off-road
environments, assess vehicle traversal risks, and propose a
probabilistic graph algorithm based on the potential field model.
Zhao'"" combined passability grading and recommended vehicle
speed to design an improved ant colony algorithm to achieve the
shortest
simultaneously consider efficiency, passability, and safety. Wang et
al.'"¥ established taboo lists for traversal and slope weight tables to
narrow the search range, allowing for three-dimensional space path

travel time. The algorithm optimized paths to

planning.

In the aforementioned research, this study introduced a path-
planning algorithm tailored to field-based livestock farming
environments, building upon the foundation of the traditional A-star
(A*) path-planning algorithm. The key steps of this algorithm are as
follows:

1) Digital Elevation Model (DEM) Construction: The algorithm
commences by creating a Digital Elevation Model (DEM) based on
the environmental characteristics of the livestock farming site. This
DEM serves as a critical input for path planning, offering insights
into the topography of the area.

2) Artificial Potential Field Evaluation: To navigate in the
unstructured field environment and address the multi-target
planning problem, the algorithm incorporates an artificial potential
field as the evaluation function. This field takes into account the
positions of multiple target points and guides the robot by exerting
forces on it to move in the desired direction.

3) Optimization of Search Neighborhood: To ensure efficient
and obstacle-free navigation, the algorithm calculates terrain slopes
and evaluates the direction of the target points, thereby optimizing
the search neighborhood. This step helps the robot select the most
favorable path segments.

4) Bézier Curve Segmentation: Finally, the algorithm employs
Bézier curve segmentation to further enhance the quality of the
generated path. The Bézier curves create smooth and continuous
paths, which are suitable for the movement of mobile robots,
avoiding abrupt turns or rough trajectories.

This path-planning approach addresses the unique challenges of
field-based livestock farming environments, ensuring that the robot
can navigate complex and unstructured terrain while closely
approaching multiple target points, and optimizing the path for
efficient and smooth movement.

2 Materials and methods

2.1 Environmental modeling for field-based livestock farming
Before delving into path planning in field-based livestock
environments, the establishment of a three-dimensional map is a
crucial prerequisite. This map serves as the foundation for planning
and provides a transformed, abstract representation of the real
environmental scene that is manageable for the robot. Common
methods for representing such maps include topological modeling,
contour maps, and grid-based mapping. In conventional grid-based
mapping, individual grid cells are assigned binary values of 0 and 1
to respectively denote the presence or absence of obstacles within a
specific grid. Figure 1 shows an example of grid mapping, where
black grid cells represent obstacles and white grid cells signify
passable areas. This method is straightforward and easily extensible
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to three-dimensional environments by employing grid cell data to
represent spatial structures. When grid cells store height
information, the resulting environment model is referred to as a
Digital Elevation Model (DEM).
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Note: Black grid cells represent obstacles and white grid cells signify passable
areas.

Figure 1 Standard grid map used by the robot

Grid-based mapping offers a simple structure, facilitating the
creation and maintenance of three-dimensional environmental
spaces. It is especially capable of representing irregular obstacles,
making it suitable for complex and ever-changing terrain in outdoor
environments. In outdoor livestock farming scenarios, the
importance of constructing a three-dimensional grid map cannot be
overstated. By mapping the real environment into a detailed 3D grid
map, path planning algorithms can obtain precise terrain data. This
grid-based 3D modeling approach enhances the accuracy and
efficiency of path planning, ensuring effective robot operation in
complex terrains. Furthermore, 3D grid maps accurately reflect
terrain undulations and obstacle distributions, providing essential
topographical information for path planning. This results in paths
that are more aligned with actual environmental needs, thereby
improving the stability and reliability of robotic operations. Thus,
exploring and utilizing the grid method for 3D modeling is crucial
for path planning in outdoor livestock environments.

Given that this research focuses on unstructured, roadless field
conditions with varied topography, grid-based mapping stands out
as a preferred choice for creating a three-dimensional environment
model. In this approach, elevation information is incorporated into
the grid cells, culminating in the establishment of a three-
dimensional elevation model that effectively simulates the field-
based environment, as shown in Figure 2. This selection aligns with
the complex and dynamic nature of field environments, allowing for
accurate representation and navigation in such terrains.

10

Sy 2 X
Figure 2 A detailed three-dimensional elevation model mapped

from the field environment

2.2 Traditional A* algorithm
The A* algorithm, introduced by Hart and his colleagues!, has
found widespread application in the field of shortest-path problems.

As a typical heuristic search algorithm, A* evaluates nodes using
heuristic search, thereby improving the efficiency of node
exploration. It is known for its strong performance and accuracy.
A* utilizes a heuristic evaluation function for the heuristic search,
which is represented as follows:

F(n) =G(n)+H(n) (1)

where, F(n) represents the total estimated cost from the starting
position to the current position n to the target position, G(n)
represents the actual cost of the path from the starting position to
the current position, and H(n) represents the estimated cost from
position n to the target position. The pathfinding process of the A*
algorithm is shown in Figure 3. The dark green grid represents the
starting point, the red grid indicates the endpoint, the gray grid
represents obstacles, the white grid signifies traversable areas, the
light green grid indicates the area to be searched, the blue grid
shows the areas already searched, and the yellow line represents the
currently discovered path.

Note: The dark green grid represents the starting point, the red grid indicates the
endpoint, the gray grid represents obstacles, the white grid signifies traversable
areas, the light green grid indicates the area to be searched, the blue grid shows
the areas already searched, and the yellow line represents the currently discovered
path.
Figure 3 The pathfinding process of the A-Star algorithm on a
conventional grid map

2.3 Improved A* algorithm

In practical applications, robots first plan their paths within the
environmental mapping and then follow these paths. However,
when using the traditional A* algorithm for path planning, the
generated paths are typically the shortest ones, which do not
conform to the requirements of closely approaching multiple points
of livestock observation, maintaining gentle slope, aligning with
supplemental feeding routes, and may result in excessive
computation time. To address these issues, this paper combines the
principles of artificial potential fields with the A* algorithm and
introduces a new method for constructing a heuristic function. In the
approach proposed in this study, the impacts of algorithm execution
time and terrain slope on the robot were also considered, optimizing
the search neighborhood. The new evaluation function is expressed
as follows:

S(n) =g(n)+H (n) )

I (n) =ah(n)+Ba(n) 3)

where, f(n) represents the total estimated cost from the starting
position to the current position to the destination, g(#) represents the
path movement cost from the starting position to the current
position, Equation (3) was used as an improved heuristic function.
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h(n) represents the distance cost in traditional A*, and a(n)
represents the cost associated with the potential field of the
livestock, which includes information about the surrounding
livestock. o and S are the proportionality factors between /(n) and
a(n).

h(n) represents the distance cost d in traditional A*, and this
calculation typically utilizes Manhattan distance, Euclidean
distance, and diagonal distance. In this study, the Euclidean distance
was used to calculate the cost of movement. For the three-
dimensional space represented using grid-based mapping, the cost d
is expressed as follows in Equation (4):

d= /(=X + 0=y + (2 —2) 4)

where, g represents the position of the target point with coordinates

(Xg» Vg» Z,), and i represents the current position with coordinates (x;,
Vis Z)-
2.3.1 Multi-objective heuristic a(n)

Based on the principles of artificial potential fields, obstacles
generate repulsive forces that decrease with increasing distance
from the obstacle to the node. Conversely, target locations create
attractive forces that are directly proportional to the distance from
the node to the target. In this study, the environmental map was
constructed as a grid-based map, with each grid location represented
by coordinates. The potential field force is one of the evaluation
functions in A*. In the grid-based map environment, the formula for
calculating the repulsive force is as follows, with the direction being
from livestock i to node £.

1 1)2
-— )., i X, y) < d,
F,= (ki) = n(p(xf,yf) &) Py Sy

0, if p(xi,y:) >d,

pxLy) = V(G —x)Y + e —y.) (6)

where, k represents the current position with coordinates (x;, y),
and 7 represents the ith grid containing livestock with coordinates
(x;, v)- Considering that only robots near the livestock would disturb
them, and in order to reduce computational load, this study

)

restricted the range of livestock. p(x;, y;) represents the distance
from the current node k& to the ith obstacle, and d,, is the distance
threshold. When the distance from the current point to the nearest
livestock is greater than dy, no repulsive force is generated. 7 is also
a simple proportionality factor. In this study, the calculation of the
magnitude of the attractive force is as Equation (7), with the
direction from node £ to the target point d.

Fo(k) = [(x, = %" + (v = 31’1 (7)

where, k& represents the current position with coordinates (x;, y),
and g represents the target point with coordinates (x,, y,). After
obtaining the attractive and repulsive forces, the total force is
calculated to determine the potential field experienced by the
current grid node k. The calculation equation is as follows:

F) = yF.00+p Y F (ki) (8)

In this context, y and u represent the weights of the attractive
and repulsive forces, respectively. In this study, y=1 and ux=3.
Artificial potential field methods inevitably encounter the problem
of local minima. When the calculated F(k) is equal to 0, to avoid the
algorithm reverting to the traditional A* algorithm, the repulsive
force at that point was abandoned. At this point, the calculation
equation for F(k) is as follows:

F(k) = yF(k) )

As livestock served as multiple target points, the path needed to
be close to the livestock but not excessively close. Therefore, the
livestock coordinates were designated as both obstacle points and
attraction points. When the distance to the livestock is beyond dy=5
m, the attractive force increases, while within a range of dy=5 m
from the livestock, the repulsive force intensifies. The potential
field for multiple target points is shown in Figure 4.
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Figure 4 Potential field of multiple target points when obstacle
points and target points coincide

2.3.2  Optimizing the search neighborhood

Traditional A* algorithm in a two-dimensional grid map checks
whether the neighborhood is passable by examining whether there
are obstacles within a grid. When the grid contains a value of 1, it
indicates the presence of an obstacle, making the neighborhood
impassable and excluded from the A* search list. Conversely, a
value of 0 means the neighborhood is obstacle-free, allowing it to
be added to the A* search list. In this study, a digital elevation
model is used where the grid stores height information. As shown in
Figure 5, the height of adjacent nodes may vary, and when the
height difference is too large, the robot cannot pass through.
Therefore, this study assessed neighborhood feasibility based on the
maximum slope S that the robot can traverse, calculated as follows:

S = arctan (Z—d) (10)

k

5.0m
5.5m

20m 49 m

Note: Black The central square represents the current node, with the eight

surrounding squares indicating neighboring nodes being evaluated. The numbers

above the squares represent the height information of the current node.

Figure 5 Elevation grid schematic of adjacent nodes in the search
neighborhood
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2 =z =zl (1)

d, = \/(xk+l —x)+ Vet _yk)2 + (@ =) (12)

where, k represents the current position with coordinates (x;, ¥y, z),
and k+1 represents an adjacent node in the search neighborhood
with coordinates (X1, Vi1, Zir1)-

The traditional A* algorithm follows a search strategy that
begins from the central node and expands into the eight surrounding
neighborhoods to find the next node to expand, based on the
evaluation function, as shown in Figure 6a. In this study, the search
strategy has been adjusted to three neighborhoods based on the
direction of the target node relative to the current node, as
illustrated in Figure 6b. In this figure, node ® serves as the central
node, and based on the direction of the target node, 5 nodes are
discarded while 3 nodes are added for expansion. For example, if
the target node is located in the 0° to 90° direction from the central
node, nodes @, @, @, @, and @ are discarded, and only nodes in
the 0° to 90° direction, such as nodes @), @), and ®), are included in
the set of nodes to be expanded. This process continues for other
angles in the same way. The expansion node is selected based on
the comparison of the evaluation function values to find a more
efficient path to the target point. However, the 3-neighborhood
search strategy still has limitations. For instance, when the A*
algorithm changes the search neighborhood from the traditional 8-
neighborhood to a 3-neighborhood, it might encounter corner cases
like the one shown in Figure 6¢. In such situations, the algorithm
might get stuck in a “trap”. To address this, if obstacles appear in
the set of nodes to be expanded corresponding to the target node,
the 8-neighborhood search strategy is used as an alternative option,
discarding the initial 3-neighborhood search strategy to enable the
alternative 8-neighborhood search.

a. The nodes to be expanded
are selected basedon the evaluation
function

b. Adjusted to a three-neighborhood
search based on the direction of the
target node

c. Deadlock situation when an obstacle coincides with
the node to be expanded in the direction of the target node
Note: The yellow square represents the current node, the green squares indicate
the nodes to be searched, the yellow arrow shows the direction of the target node,
and the red square marks the target node.
Figure 6 Improvement of the traditional A* algorithm by
replacing 8-neighborhood search with 3-neighborhood search
oriented towards the target direction

2.4 Path Smoothing

In grid maps, the planned paths often contain numerous sharp
turns and large corners, causing the mobile robot to make abrupt
turns or even come to a complete stop during its motion. This
unstable motion not only reduces the efficiency of the mobile robot’s
operation but also leads to increased power consumption and wear
and tear. As a result, many researchers have started utilizing
traditional Bézier curves to smooth the optimal paths generated
during planning. Due to the poor numerical stability of high-order
Bézier curves, this study employed piecewise third-order Bézier
curves.

Bézier curves require just a few control points to generate more
complex, smooth curves. This paper uses Bézier curves to achieve
path smoothing on the optimal planned path. Typically, n+1 control
points are defined to create an n-th order Bézier curve, as expressed
in Equation (13).

P()=> PB, 1), 1€[0,1] (13)

i=0

In Equation (13), P; and ¢ represent the coordinate values of the
control points and the parameter, respectively. B;,(f) denotes the
Bernstein polynomial, and its expression is defined in Equation (14).

PB,(t)=Cif(1-0", i=0,1,...n (14)

In Equation (14), C'represents the binomial coefficient, and n
is the degree of the Bézier curve. The common parameter
expressions for a third-order Bézier curve are as follows:

P(t)=Py(1-0’+3P,(1 -1t +3P,(1-) + P;£, t[0,1] (15)

From Equation (15), it can be seen that a third-order Bézier
curve passes through the first control point P, (+=0) and the fourth
control point P;(#+1).

When the complete path is obtained, the path is smoothed by
checking the slope of the connecting lines between adjacent nodes.
The specific process is as follows:

1) Connect adjacent nodes (m, m+1) and (m+1, m+2) in the
path and check if the slope of the connecting line falls within the
specified slope threshold range. If it does, add nodes (m, m+1, m+2)
to the list of points to be smoothed and apply third-order Bézier
curve smoothing. If the slope does not fall within the threshold
range, set node m+1 as the new starting point.

2) Repeat Step 1 by iterating through all the path nodes until all
nodes have been processed.

2.5 Fusion Algorithm

The algorithm fusion proposed in this study combines the
improved A* algorithm with segmented third-order Bézier curves. It
first utilizes the improved A* algorithm for path planning and then
employs segmented Bézier curves to smooth the planned path,
reducing redundant nodes and making the path smoother. The
specific process of the fusion algorithm is shown in Figure 7.

3 Experiments

To validate the performance of the improved A* algorithm, this
section conducted comparative simulation experiments on a
Windows 11 operating system with an Intel i5-12400F processor
and 16 GB RAM using Matlab R2020b.

The parameters required for the improved A* algorithm include
the distance cost ratio factor @, the livestock potential field cost
ratio factor p, the potential field repulsion coefficient #, the
attraction weight y, the repulsion weight 4, and the maximum slope
S. The maximum slope S is determined based on the robot’s
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Figure 7 Flowchart of the specific steps in the improved A* algorithm

maximum climbing capability; for this study, the Thunder Mini four-
wheel differential drive robot has a maximum climbing capability of
0.013, thus S is set to 0.013. Selecting the appropriate parameter
combination is crucial to ensure the algorithm’s performance when
optimizing complex algorithms. To ensure the validity and
reliability of the experimental results, this study references the
parameter settings from existing literature. Yan et al.”" conducted
detailed analysis and experimental validation of key parameters for
path planning algorithms in their research, demonstrating the
superiority of specific parameter combinations in complex
environments. Therefore, this study adopts the parameter settings
from Yan et al.’s research as an initial reference. The parameters
and their ranges were tested on a 100x50 grid map. The
experimental results are listed in Table 1, and the optimal parameter
combinations are presented in Table 2.

The experiments were performed in different environments to
assess the effectiveness of the improved A* algorithm. The
simulation experiments used a three-dimensional grid map, where
purple grids represent the starting nodes, and green grids represent
the target nodes. The experiments were conducted in two different-
sized environments: 200200 and 100x100, both with a maximum
vertical height of 15 m in the three-dimensional grid map
environment.

The parameters for the improved A* algorithm in the
simulation experiments are specified in Table 2, and the results are
presented in Figures 8 and 9. Further comparisons of path length,
operation time, total number of nodes, paths for poultry observations,

and paths for poultry activity points are listed in Table 3.

After 50 simulation runs, it is evident that the improved A*
algorithm, when compared to the traditional A* algorithm, is better
suited for the wild livestock farm environment. While there are
minimal differences in terms of path length and operation time, the
improved A* algorithm significantly outperforms the traditional A*
algorithm in livestock observation length. It excels in avoiding
livestock activity areas and results in smoother path planning.

Table1 Parameter testing experimental results

Proportion- Proportion- Repulsion

ality factor ality factor coefficient Gr'awta- Repulsive Path ~Qbservation
. N . tional . length/  length/

of distance of potential of potential (ot weight
cost field field welg m m
0.7 0.9 1.0 1.1 2 90.54 0
0.7 1.0 1.1 0.9 3 90.21 0.23
0.7 1.1 0.9 1.0 4 90.55 3.11
0.8 0.9 1.0 1.1 2 93.56 4.96
0.8 1.0 1.0 1.0 3 94.01 6.54
0.8 1.1 0.9 1.0 4 100.23 6.91
0.9 0.9 1.0 1.1 2 98.23 6.21
0.9 1.0 1.1 0.9 3 97.42 6.02
0.9 1.1 0.9 1.0 4 98.62 6.33

Table 2 Parameter of algorithm

Parameters a p n y u dy N

Values 0.8 1.0 1.0 1.0 3.0 5.0 0.013
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To further investigate the advantages of the improved A*
algorithm, a second set of experiments was conducted. These
experiments started with 40x40 maps and increased in size in steps
of 20 in both length and width. They compared the improved A*
algorithm to the traditional A* algorithm to confirm the benefits of

m Map
Traditional A* path 200

— Improved A* path

- Start point

- End point

N
——
[SISTNC L)

a. Comparison of improved A* (red) and traditional A* (white) and 3D view

the improved A* algorithm. The starting and target points were set
in corresponding positions on seven maps, as indicated in Table 4.

These findings, based on 50 simulation runs and the additional
experiments, demonstrate the advantages of the improved A*
algorithm for the wild livestock farm environment.

\
180
160 - Map
140 °} d Traditional A* path
— Improved A* path
120 \ Improved,
100 usion A* pat
Y \ + Start point

End point

b. Comparison of improved A* (cyan) after smoothing and
traditional A* (blue) and 2D view

Figure 8 Comparison results of the experiment in 200x200 grid map

= Map

- Start point
+ End point

a. Comparison of improved A* (red) and
traditional A* (white) and 3D view

Traditional A* path 100
—Improved A* path
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Figure 9 Comparison results of the experiment in 100x100 grid map

Table 3 Performance comparison of the improved A* and
traditional A* algorithms

Map Algorithm Path Operation Total Observation Activity
size length/m  time/s  nodes  length/m area/m
200x Traditional A* 305.8894  1.1304 8855 0 0
200 mproved A* 307.7889  0.1384 627 32.1126 0
100x Traditional A* 160.3675  0.5124 469 7.6568 0
100 tmproved A* 163.2965 0.1078 300 17.6568 0

Table 4 Coordinates of start and end points in maps of
different sizes

Map size Start point End point
40x40 2,2) (38, 38)
60x60 2,2) (58, 58)
80x80 2,2) (78, 78)

100x100 2,2) (98, 98)

120x120 2,2) (118, 118)

140x140 2,2) (138, 138)

160x160 2,2) (158, 158)

The simulation results obtain the A-star algorithm and the
improved A-star algorithm in the eight specification graphs
corresponding to the path lengths, as shown in Figure 10; explore
nodes and their logarithmic scale graphs, as shown in Figure 11;
calculate the time of its logarithmic scale graph, as shown in
Figure 12.

It is evident that the traditional A* algorithm exhibits

exponential growth in computation time and total node count as the
map size increases, whereas the improved A* algorithm, with
optimized search neighborhoods, significantly reduces the number
of explored nodes and computation time. When compared to the
traditional A* algorithm, with almost the same total distance, the
improved A* algorithm reduces the number of nodes by over 61.0%
and decreases the runtime by 69.4%.

As the map size increases, the effectiveness of the improved A*
algorithm becomes more pronounced. In summary, the enhanced
A¥* algorithm consistently outperforms the traditional A* algorithm
in all scenarios, aligning better with the requirements of the wild
animal farming environment while offering superior computation
time and exploration node efficiency.

The satellite map experiments were further conducted in a
common field-based livestock farming environment. The central
coordinates of the experimental scenario were (119°8 '40.81"E,
49°24'31.46"N), covering an area of 500500 m* with elevations
ranging from 610 to 628 m and significant terrain variations. Matlab
was utilized to construct a three-dimensional grid map based on
Digital Elevation Model (DEM) data, as shown in Figure 13.

The starting position was set at coordinates (2, 2), and the
target position was defined as (498, 498). The parameters for the
improved A* algorithm during the experiment remained consistent
with those used in the previous simulations, as outlined in Table 2.
The results, as illustrated in Figure 14, include a detailed
comparison of path length, operational time, total node count,
livestock observation paths, and livestock activity point paths, as
presented in Table 5.
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After 50 simulations, it becomes evident that, when compared
to the traditional A* algorithm, the improved A* algorithm is better
suited for field-based livestock farming environments. In scenarios
where there is little difference in terms of path length and
operational time, the improved A* algorithm significantly
outperforms the traditional A* algorithm in terms of livestock
observation distance and the avoidance of entering livestock
activity areas.

To further validate the performance and practicality of the
improved A* algorithm in real-world conditions, tests were
conducted in an actual field-based livestock farming environment.
The Thunder Mini four-wheel differential drive mobile robot, as
shown in Figure 15a, was used in these experiments. The robot
measures 0.730 m in length, 0.570 m in width, and 0.606 m in
height. It is equipped with a Velodyne Puck 16-line LIDAR for map
construction and features an i5-12400F processor with 32 GB of
RAM for navigation, localization, and mapping. The Noetic version
of ROS and Ubuntu 20.04 operating system were utilized.

I I 1 1y

100 200 300 400 500 600

X/m

Figure 13 Three-dimensional elevation model of experimental map

As illustrated in Figure 16a, the experiment parameters were set
with a starting position of (91.31 m, 80.03 m, 0.02 m) and a goal
position of (20.27 m, 69.56 m, 0.50 m). The map resolution was
0.05 m, the maximum linear velocity was 0.50 m/s, the maximum
angular velocity was 2.75 rad/s, the maximum linear acceleration
was 1.0 m/s?, and the maximum angular acceleration was 3.2 rad/s
The parameters of the improved A* algorithm were consistent with
those used in the simulation experiments, as detailed in Table 2.

Figure 15a provides a detailed view of the key electronic
components integrated within the robot. A 3D environmental model
of the field-based livestock farm was constructed using a 3D LiDAR,
as shown in Figure 15b. The initial and target positions are shown in
Figures 15¢ and 15d. Figure 15¢ depicts the livestock activity area.
Figure 15f shows the environment encountered by the mobile robot
during operation. The path planning results of the traditional A* and
improved A* algorithms are illustrated in Figures 16a-16c.
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Figure 14 Comparison results of the experiment in 500x500
grid map

Table 6 lists the averages from 20 tests conducted using the
Thunder Mini four-wheel differential mobile robot in a field-based

x

— e e o o o

livestock farm. From the data in Table 6, it can be deduced that the
improved A* algorithm reduces computation time by 48.70%
compared to the traditional A* algorithm, while maintaining a
comparable path length. Additionally, the improved A* algorithm
reduces the total number of search nodes by 37.90%. Moreover, the
improved A* algorithm significantly increases the length of
livestock observation without entering designated livestock activity
areas, surpassing the traditional A* algorithm.

Table 5 Performance comparison of the improved A* and
traditional A* algorithms in 500%500 grid map
Observation Activity

Path  Operation

Map Algorithm  length/  time/ Total length/ area/
size nodes
m s m m
Traditional A* 832.55 330.98 11220 0 0
500500

Improved A* 840.05  23.19 906 104.78 0

f. Intermediary state

Figure 15 Experimental equipment and environment

c. Improved A* algorithm planning path of the side view

Figure 16 Planned trajectories of different algorithms

Table 6 Performance comparison of the improved A* and
traditional A* algorithms in wild livestock farm

Map Algorithm Path  Operation Total Observation Activity
size g length/m  time/s nodes length/m  area/m
Traditional A*  93.56 1.811 153 0 0
50%100
Improved A* 95.06 0.929 95 7.93 0

4 Conclusions

The proposed method is designed to enhance the widely used A-
sta (A*) algorithm by introducing a novel heuristic function. It takes
into account the impact of terrain slopes in the outdoor environment
on vehicle navigation. Based on the distribution of target nodes and
obstacles, the search neighborhood in the traditional A* algorithm is
adjusted from 8 nodes to 3 nodes, effectively eliminating redundant
expansion nodes. Furthermore, this method introduces weighted
factors and an artificial potential field into the evaluation function
of the traditional A* algorithm. This enhances the algorithm’s
search direction information, allowing it to efficiently observe
livestock without disturbing them. Consequently, it reduces the
number of expansion nodes and search time, thereby improving the
A¥* algorithm’s performance.

In comparison to traditional heuristic functions that only
consider distance, this approach considers livestock information
specific to the outdoor farming environment, making it more
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suitable for livestock farming scenarios. The improved algorithm
provides shorter path calculation times, reduces unnecessary nodes,
and enhances the algorithm’s operational efficiency.

The algorithm’s limitations are important to consider for further
research and improvement. Here’s a summary of the limitations and
potential future work:

Limitations:

1) The algorithm is not suitable for complex dynamic scenarios,
as it may not handle rapidly changing conditions.

2) The algorithm may occasionally get trapped in corner cases
during neighborhood search, leading to redundant nodes. However,
simulation results show that the probability of getting stuck in
random environments is low.

Future Work:

1) Investigate the algorithm’s performance in complex dynamic
scenarios common in outdoor livestock environments to ensure its
robustness.

2) Explore the integration of techniques like key point
extraction to prevent getting stuck in corner locations and to reduce
redundant nodes, ultimately improving algorithm efficiency.

3) Conduct comparative studies between the improved
algorithm and other recent algorithms for mobile robot path
planning. This help further wvalidate the algorithm’s
effectiveness and identify areas for further improvement.
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