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Detection and threshold-adaptive segmentation of farmland residual
plastic film images based on CBAM-DBNet
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Abstract: Robust, accurate, and fast monitoring of residual plastic film (RPF) pollution in farmlands has great significance.
Based on CBAM-DBNet, this study proposed a threshold-adaptive joint framework for identifying the RPF on farmland
surfaces and estimating its coverage rate. UAV imaging was used to gather images of the RPF from several locations with
various soil backgrounds. RPFs were manually labeled, and the degree of RPF pollution was defined based on the RPF
coverage rate. Combining differentiable binarization network (DBNet) with the convolutional block attention module (CBAM),
whose feature extraction module was improved. A dynamic adaptive binarization threshold formula was defined for segmenting
the RPF’s approximate binary map. Regarding the RPF image detection branch, the CBAM-DBNet exhibited a precision (P)
value of 85.81%, a recall (R) value of 82.69%, and an F1-score (F1) value of 84.22%, which was 1.09 percentage points higher
than the DBNet in the comprehensive index F1 value. For the RPF image segmentation branch, using CBAM-DBNet to
segment the RPF image combined with an adaptive binarization threshold formula. Subsequently, the mean absolute percentage
error (MAPE), root mean square error (RMSE), and mean absolute error (MAE) of the prediction of RPF’s coverage rate were
0.276, 0.366, and 0.605, respectively, outperforming the DBNet and the Iterative Threshold method. This study provides a
theoretical reference for the further development of evaluation technology for RPF pollution based on UAV imaging.
Keywords: binarization threshold adaptive, residual plastic film, object detection, image segmentation, UAV remote sensing
DOI: 10.25165/j.ijabe.20241705.8069

Citation: Xiong L J, Hu C, Wang X F, Wang H B, Tang X Y, Wang X W. Detection and threshold-adaptive segmentation of

Lijian Xiong?, Can Hu*>*", Xufeng Wang?>, Hongbiao Wang?>, Xiuying Tang®, Xingwang Wang*>

2. Modern Agricultural Engineering Key Laboratory at the Universities of Education Department of Xinjiang Uygur Autonomous Region,

farmland residual plastic film images based on CBAM-DBNet. Int J Agric & Biol Eng, 2024; 17(5): 231-238.

1 Introduction

The plastic film can increase temperature and moisture
retention and promote the growth of crops in arid areas. The
application of plastic film technology has increased crop yield and
water utilization by 45.5% and 58.0%, respectively'. Nevertheless,
the mulch that has not been fully recovered can lead to residual
plastic film (RPF) being left in the farmland, which can damage the
ecology of the farmland and endanger the health of the soil®’. In
areas with long-term plastic film mulch, mechanical recycling was
often used to reduce the amount of RPF in the soil”. Due to the
RPF’s small size, irregular shape, and color close to the soil, it is
difficult to identify. Rapid and accurate monitoring of RPF’s
coverage rate is crucial for enhancing the efficiency of mechanized
recycling and implementing control of RPF pollution in agricultural
soil, among other things®.
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The traditional assessment method for RPF pollution is manual
Field workers collected RPF through field
investigation, sampling, and subsequent washing, drying, and

investigation'®”,

weighing to gain a preliminary understanding of the distribution
characteristics of residual film contamination in the study area'®.
However, the manual sampling method for residual film pollution
monitoring in these studies is labor-intensive and low-efficiency.

UAYV remote sensing technology has many advantages, such as
high operation efficiency, good mobility, high spatial resolution,
etc. In recent years, there has been a growing interest among
scholars in focusing on RPF pollutant monitoring using UAV
remote sensing technology™'?. Most of these studies use traditional
image segmentation methods such as manual threshold segmentation,
iterative threshold segmentation, large-law segmentation, and so on.
However, these methods require complex preprocessing and feature
parameter extraction. In addition, these RPF images had a larger
size, good continuity, and low fragmentation.

With the continued popularity of deep learning, UAV imaging
combined with convolutional neural networks (CNN) has been
increasingly widely used in agriculture!* . Meanwhile, other
researchers have investigated RPF detection and identification using
UAYV images!"“".. For example, Zhang et al.' improved a classical
object detection framework (Faster RCNN) to recognize the RPF in
the farmland; Zhai et al.'"”’ proposed an evaluation method of the
RPF’s coverage rate using pixel block and machine learning models
in order to effectively recognize the RPF in the cotton field; Qiu et
al."! built a model for segmenting residual film from the cotton
field image based on the three deep learning frameworks LinkNet,
FCN, and DeepLabv3. These methods above take full advantage of
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CNN to automatically extract deep image features””. However, the
robustness of image segmentation has not been fully considered.
Due to the different colors and shapes of the RPF and the different
soil backgrounds in the image, the contrast between the RPF and the
background was different. Burgos-Artizzu et al.”" pointed out that
automatic adjustment of thresholds is crucial for robust segmentation
across different backgrounds. Besides, few studies consider both
RPF image detection and segmentation in the field of RPF pollution
monitoring. Hence, the purpose of this study was to build a
threshold-adaptive joint framework for RPF image detection and
segmentation. The main contributions of this study are as follows:

1) Combining differentiable binarization network (DBNet)*,
an object detection network with a differentiable binarization
method, with the convolutional block attention module (CBAM)™,
which has spatial and channel attention mechanisms, adapts DBNet
to the detection of RPF images; 2) A threshold-adaptive joint
framework for RPF image detection and segmentation based on
CBAM-DBNet was proposed; 3) A dynamic adaptive binarization
threshold formula was defined for segmenting the RPEF’s
approximate binary map; 4) Image annotation datasets for RPF were
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Figure 1

Second, the image dataset was annotated using the tool “Sprite
Labeling Assistant Colabeler” (http://www.jinglingbiaozhu.com/).
After running the tool, the target samples of the RPF in each image
were annotated; thereafter, a TXT file containing the target type and
coordinate information was generated for training on the dataset.
The detailed data operation steps are shown in Figure 2.

Third, the ratio of the sum of the manually labeled RPF area to
the image area was calculated, and this was used as the label value
for the RPF’s coverage rate. S; is the area of the ith labeled box of
the image, Si, is the total area of the image. The coverage rate TR
is defined as:

_ =l

TR =

S (1

constructed in a real environment; 5) Experiments demonstrated the
effectiveness of the proposed framework for RPF image detection
and segmentation.

2 Materials and methods

2.1 Data acquisition

Figure 1 shows the RPF image acquisition process. Images of
RPF were taken at the farms near Alaer, and Shihezi, Xinjiang,
China. The images were taken in April 2021, when the farmland
had after-spring tillage and the surface RPF were evenly distributed.
The images taken during this period facilitate normalization
processing. The RPF images were collected using a UAV with a 12-
megapixel effective camera developed by Dajiang (Shenzhen
company). The camera shot from the top down at an angle of 90°
and a height of 5 m from the ground. 2120 images were obtained
from different soil backgrounds, and 237 images with duplicate or
unclear objects were removed. A total of 1883 valid images were
obtained. The obtained data were analyzed in three steps. First, the
obtained image datasets were randomly divided into two groups:
1708 images in the training set and 175 images in the test set.

Sampling ar ea image

RPF image acquisition

Figure 3 displays the quantity of RPF-labeled boxes and the
RPF coverage rate for each image. The minimum value of the
number of RPF-labeled boxes in the dataset is 4, the maximum
value is 101, and the average value is 38. The minimum value of the
percentage of RPF in the image is 0.18%, the maximum value is
5.39%, and the average value is 1.02%. The dataset is characterized
by a large number of RPF in each image but a small percentage of
the RPF area, which also presents challenges to the subsequent
detection of RPF and coverage rate calculation.

2.2 Overview of DBNet

The RPF images have different backgrounds due to
illumination, soil color, etc. The traditional image segmentation
method based on global thresholds cannot match a more appropriate
binarization threshold for each image, so it has an inherent accuracy
bottleneck. Liao et al.”? proposed a differentiable binarization
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object detection neural network (DBNet). They wused the binarization formula and introduced the binarization operation into
differentiable binarization formula instead of the standard the neural network for joint optimization.
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Figure 3  Annotated object and anchor box statistics.

DBNet first fed the image to the feature pyramid network
(FPN)®. Then, the pyramid features were upsampled to the same
scale to generate a feature map (F-map). Thirdly, the F-map was
used to predict the probability map (P-map) and the threshold map
(T-map). Finally, the approximate binary map (B—map) was
calculated by P-map and F-map. During the training period, the P-
map, T-map, and B —map were supervised. In the inference period,
the bounding boxes can be easily obtained from the approximate
binary map or the probability map using a box formulation module.
2.2.1

The standard binarization formula is not differentiable. The

Differentiable Binarization

differentiable binarization formula was proposed™, and then the
binarization operation was put into a partitioned network for joint
optimization. The approximate binary map is represented by E;,

the probability map by P;; the threshold map by T, and the

amplifying factor by K. The differentiable binarization is defined as:
— 1

2

b= e
2.2.2  Loss function
The loss function L can be expressed as a weighted sum of the
loss for the probability map L, the loss for the binary map L,, and
the loss for the threshold map L,. The loss calculation formula is as
follows:

L=L+axL,+BXL, 3)

In Equations (3), a and f are set to 1.0 and 10.0, respectively.

Both L, and L, use binary cross-entropy loss. Online hard example

mining is also employed to address the imbalance of positive and

negative examples. The proportion of positive and negative samples
is adjusted to 1:3%,

2.3 Proposed the threshold-adaptive joint framework for RPF
image detection and segmentation

In this study, Figure 4 shows the threshold-adaptive joint
framework for RPF image detection and segmentation, which was
based on CBAM-DBNet. The procedure was as follows:

1) The feature map was extracted. A classical feature extraction
network was the residual network (ResNet)®. The CBAM was
introduced to improve the feature extraction network of the DBNet
since the RPF object was tiny and the features were not evident;

2) The feature map was spliced. An FPN structure was
employed to fuse the feature maps of various sizes. Poor resolution
but high semantics are features of small-scale feature maps, while
high resolution but low semantics are characteristics of large-scale
feature maps””. As a result of the lateral connections between the
feature maps of the various layers, the feature maps include
extensive positional and semantic information on the remaining
membrane. The F-map was created by splicing together the feature
maps of the four scales that have been upsampled to 1/4 size;

3) The B—map was created. The F-map was used to construct
the P-map and the 7-map, which were then combined using the
differentiable binarization technique to produce the B —map;

4) The RPF image was detected. The RPF’s B-map and the
box formulation module were used to generate the bounding box,
and the RPF detection results were obtained;

5) The RPF image was segmented. The RPF’s B-map was
segmented into a binary image by using the adaptive threshold
formula. RPF’s coverage rate was calculated by combining the
coverage rate calculation formulas.

2.3.1 Improved feature extraction module

There was some phenotypic similarity between the RPF and
disturbances such as soil clods and leaves. Due to the RPF photos’
small size, the original feature extraction module was unable to
extract deeper features from them™. Therefore, CBAM was
included in the feature extraction module in this study. The modules
are plug-and-play, allowing the network to concentrate on the
crucial areas of the feature graph and provide features with greater
semantic information. CBAM was added to the first and last
convolutional layers of ResNet. Figure 5 shows the CBAM’s
fundamental structure: F is the input feature mapping; M, is the
channel attention module; F. is the feature mapping for channel
attention refinement; F” is the feature map of the fusion of F and F’;
M is a spatial attention module; F” is the feature mapping of spatial
attention refinement; F’ ' is the feature mapping for the final
refinement of CBAM.
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The CBAM is mainly composed of two parts: the channel
attention module and the spatial attention module. Relevant studies
demonstrated that improving the channel attention module’s
features first before connecting it to the spatial attention module in
series produced the best results. After the channel attention
refinement, feature mapping will be more effective in extracting the
contour features of the RPF. The average pooling and maximum
pooling operations are performed on the multilayer perceptron to
aggregate the spatial information of the feature mapping, generating
two different spatial context descriptors Fy, and Fy, . o is the
sigmoid activation function, and W, and W, are the weights of the
shared network. For the input feature mapping F=R“"", F is
calculated as follows:

Fozo (Wi (Wa (L)) + Wi (Wa (i) “)

The spatial attention module focuses on the spatial relationship
between features and is a supplement to channel attention. After
spatial attention refinement, feature mapping will pay more
attention to the location information of the RPF. ¢ is the sigmoid
activation function, /7 represents the 7x7 convolution operation,
and F,, and F,, represent the channel-based global maximum
pooling and global average pooling, respectively. The formula for
F is as follows:

Fi=o (£ (Fiy Fiu) ()
2.3.2 RPF image detection branch
The RPF’s B—map was used in this study in the RPF detection

branch to produce the RPF detection boxes. The generation of the
detection boxes consisted of three steps: 1) the RPF’s approximate
binary map was binarized with a constant threshold to obtain a
binary map; 2) the binary map’s connected domains were obtained;
3) the shrunken text area was expanded back again by expansion
according to the offset factor D' of the Vatti clipping algorithm to
obtain the final detection boxes™. D' is calculated by the following
equation:

_A'XYr
7

D

(6)

where, A’ is the area of the shrinking polygon; L’ is the perimeter of
the shrinking polygon; #' is empirically set to 1.5.
2.3.3 RPF image segmentation branch

In the RPF image segmentation branch, the RPF’s B—map
generated by the prediction model. The processing was as follows:
1) the binarization threshold value was obtained by an adaptive-
threshold formula; 2) the RPF’s binary map was achieved by the
adaptive threshold; 3) the RPF’s coverage rate was computed. The
details are as follows:

Adaptive-threshold formula. Each pixel value of the B—map
was stored as an RPF’s approximate binary matrix G; g; is the
approximate binary value of the ith row and jth column of the
approximate binary image; g;€[0,1]; # and w are the height and
width of the
approximate binary matrix G is defined as:

approximate binary map, respectively. The

gu - 8w
G=| ... g .. 7
g oo Bhw
The adaptive-binarization threshold bn is defined as
Equation (9).
> | 2w
bn = ———L 2 x255 8
n T X ®)

So far, the binarization threshold for each image has been
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obtained adaptively. The RPF’s approximate binary map was
segmented into a binary map according to the bn, which was then
used for the subsequent calculation of the RPF’s coverage rate.

The RPF’s coverage rate calculation. The RPF’s coverage rate,
i.e., the ratio of the total number of the RPF pixels to the total
number of pixels in the image. n,, is the number of RPF pixels, i.e.,
the number of pixels with pixel values greater than bn. The RPF’s
coverage rate (PR) calculation is defined as:

PR = ! )
h-w
2.4 Evaluation methods

In this section, the effectiveness of the proposed method was
evaluated in terms of both RPF image detection and RPF image
segmentation.

RPF detection belongs to the category of object detection.
Therefore, the commonly used precision, recall, and F1-score (F1)
were chosen as the evaluation indexes for RPF detection. Recall (R)
indicates the ability of the model to find all relevant samples
without missing any. Precision (P) indicates how well the model
performs in correctly identifying relevant samples while minimizing
false positives. The F1 is the harmonic mean of precision and recall,
which provides a single metric that balances both precision and
recall. R, P, and F1 are defined as follows:

_ T/’ 0,
R e 100% (10)
P=—Tr %100% (11)
T,+F,
pl = 2XPXR (12)
P+R

where, T represents the case in which the model predicts the RPF
and it is the RPF, Fy represents the case in which the model predicts
the RPF but it is not the RPF, and F, represents the case in which
the model predicts the RPF but it is not the RPF.

The mean absolute percentage error (MAPE), mean absolute
error (MAE), and root mean square error (RMSE) were often used
as the evaluation index of the predicted model®**., The MAPE is
often used in practice because of its very intuitive interpretation in
terms of relative error™”. The RMSE indicates the sample standard
deviation of the difference between the predicted and observed
values (known as the residual)?’. The MAE indicates the mean of
the absolute error between the predicted and observed values®™. TR,
is the coverage rate label value of the ith image and PR; is the
coverage rate prediction value of the ith image. N is the number of
images. The smaller the values of MAPE, RMSE, and MAE, the
higher the model prediction accuracy. The MAPE is defined as

follows:
1 «—|PR,-TR,
MAPE:NZ‘TRI_’ (13)
i=1
The RMSE is defined as follows:
| — 2
RMSE= [ " (PR,-TR) (14)
i=1
The MAE is defined as follows:
1<
MAE= =% |PR-TR, (15)

i=1

2.5 Experimental software and hardware conditions
The hardware and software conditions in the experiments are
listed in Table 1, and GPU acceleration was used in the training.

Table 1 Experimental settings

Configuration Parameter
CPU Intel(R) Core(TM) i9-10900K
GPU NVIDIA GeForce RTX3060
Memory 12 GB
Operating system Windows 10
Development enviroment PyCharm Community Edition 2021
Programming language Python3.6.2

Accelerated environment CUDA 10.1;CUDNN 7.6.5

Library Torch 1.9.0;TorchVision 0.10.0; Opencv 4.5.2;

In this study, the Adam optimizer was used to train the model.
The training batch size was set to 8, and the Poly strategy was used
to dynamically adjust the learning rate. The learning rate of each

iter
~ maxiter
rate was set to 0.0001. The training batch epochs were set to 300.

power
iteration was [, = l,(l ) , where the initial learning

3 Results and discussion

3.1 RPF image detection experiment

In the experiment of RPF image detection, this paper compared
the DBNet with the CBAM-DBNet. The performance index
comparison of the two methods is listed in Table 2. It can be seen
that the improved method has increased the precision by 3.02
percentage points, slightly decreased the recall by 0.79 percentage
points, and increased the F1 value by 1.09 percentage points. After
the convolutional attention module was added to the feature
extraction module, the network paid more attention to the deep
features, which enabled the network to detect the RPF objects more
accurately. However, some false positive samples were also
generated, which made the recall slightly lower.

Table 2 Recall, Precision, and F1-score on different methods
including DBNet and CBAM-DBNet

Method Recall Precision Fl-score
DBNet 83.48% 82.79% 83.13%
CBAM-DBNet 82.69% 85.81% 84.22%

A comparison of the detection results of the two methods is
shown in Figure 6, with a total of four original images selected with
different soil backgrounds. Overall, both methods can detect most
of the RPF. In particular, from Figures 6a-6d, after the CBAM was
added to the feature extraction module, the Improved DBNet
focused more on deeper features and detected more small objects.

For further comparison, take a portion (1/4) of an image from
the test set as an example for observation. After the original image
is labeled, there are 16 RPF labeling boxes in Figure 7. The DBNet
correctly detected 6 RPFs, but 10 RPFs were missed. Using the
CBAM-DBNet, 12 RPFs were detected correctly, but 2 RPFs were
detected incorrectly, and 2 RPFs were missed. Compared to
Figure 7 (Label Img) and Figure 7 (DBNet), the CBAM-DBNet
detected more small objects while improving the detection
accuracy. The RPF, however, has also been missed or falsely
detected using the aforementioned two methods. At a flight height
of 5 m and a camera field of view of 84°, one image represents an
area of 38.91 m’. The size of the RPF was concentrated in tens to
hundreds of square centimeters, accounting for a very small
proportion of the image!"®. Additionally, a few RPFs were detected
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incorrectly or were missing altogether because they were too close
to the soil’s color and texture.

DBNet CBAM-DBNet

Label image

Note: a, b, ¢, and d with different background conditions.

Figure 6 Comparison of the detection results on DBNet and
CBAM-DBNet for four sets of RPF images

Label image DBNet
CBAM-DBNet Raw image

Figure 7 Detailed comparison of the RPF detection results on
DBNet and CBAM-DBNet

3.2 RPF image segmentation experiment

The Iterative Threshold method is a common method for
calculating the RPF coverage rate®'. The Iterative Threshold
method was applied to the test set. The three indicators (MAPE,
RMSE, and MAE) used to evaluate the model have the optimal
solution under the condition of traversing the global threshold. As
shown in Figure 8, the optimal values of the three indicators
correspond to a threshold range between 198 and 205 after testing.
When the binarization threshold was 204, the MAPE reached the
minimum value of 0.817. When the binarization threshold was 199,
the RMSE reached the minimum value of 1.132. When the
binarization threshold was 201, the MAE reached the minimum
value of 0.831. Since these three indicators are evaluated from
different perspectives, the optimal solution corresponds to different
thresholds®2.

The two methods based on the DBNet and the CBAM-DBNet
may offer an adaptive binarization threshold depending on the
actual circumstances of each image. This is shown in Figure 9. The
DBNet had 80 images with a binarization threshold of 28, 90
images with a threshold of 29, and 5 images with a binarization
threshold of 30; the CBAM-DBNet had 134 images with a
binarization threshold of 21, 36 images with a binarization threshold
of 22, and 5 images with a binarization threshold of 23.
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DBNet and CBAM-DBNet

On the test set, a comparison experiment comparing the three
approaches was conducted. In Table 3, the specific indication values
were displayed. The technique based on the differentiable
binarization neural network including DBNet and CBAM-DBNet,
outperforms the Iterative Threshold method in forecasting RPF’s
coverage rate. Regarding the indicator MAPE, both DBNet and
CBAM-DBNet exhibited lower values compared to the Iterative
Threshold (204) method, with a difference of 0.481 and 0.541,
respectively. In terms of the RMSE indicator, methods DBNet and
CBAM-DBNet showed lower values compared to the Iterative
Threshold (199), with a difference of 0.709 and 0.766, respectively.
Similarly, for the MAE indicator, both DBNet and CBAM-DBNet
demonstrated lower values compared to the Iterative Threshold
method (201), with a difference of 0.214 and 0.226, respectively.
The differentiable binarization neural network incorporates the
binarization threshold into network training to achieve joint
optimization. The optimal binarization threshold for each image
may be determined adaptively during the inference phase.
Compared with the DBNet, the CBAM-DBNet decreased by 0.06,
0.057, and 0.012 in MAPE, RMSE, and MAE respectively, which
proved the validity of the model improvement.

Table 3 MAPE on different methods include Iterative
Threshold, DBNet, and CBAM-DBNet

Method MAPE RMSE MAE
Iterative Threshold (199) 0.973 1.132 0.838
Iterative Threshold (201) 0.873 1.143 0.831
Iterative Threshold (204) 0.817 1.173 0.846

DBNet 0.336 0.423 0.617

CBAM-DBNet 0.276 0.366 0.605
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For further comparison, there were four test images with
different soil backgrounds. The binary mapping of the RPF is
shown in Figure 10. For example, in sub-image a, the label value of
the RPF’s coverage rate of the original image was 1.85%; the
Iterative Threshold method calculated a coverage rate of 0.72%; the
DBNet calculated a coverage rate of 1.45%; and the CBAM-DBNet
calculated a coverage rate of 1.74%. It could be seen that the effect
based on CBAM-DBNet was the best. In sub-image b, the label
value of the RPF’s coverage rate of the original image was 1.1%.
The coverage rate calculated based on the Iterative Threshold,
DBNet, and CBAM-DBNet methods was 0.29%, 0.85%, and
1.12%, respectively. The best result is based on the CBAM-DBNet,
which found more fine RPF in the image. The method based on
Iterative Threshold was to binarize all images with the optimal
threshold value selected for the test set as a whole and then
calculate the coverage rate with this fixed threshold value, so the
method could not adapt well to each different image, resulting in a
large deviation of the calculated RPF’s coverage rate compared with
the labeled value.

Raw image Iterative threshold DBNet CBAM-DBNet

b-
R AR

Note: a, b, ¢, and d with different soil backgrounds.
Figure 10 Comparison of the binarization results on methods

Iterative Threshold, DBNet, and CBAM-DBNet for four sets of
RPF images

4 Conclusions

This study developed a threshold-adaptive joint framework
based on CBAM-DBNet for residual plastic film (RPF) image
detection and segmentation. By introducing DBNet into the field of
RPF image processing, the binarization threshold could be
optimized in conjunction with the network, allowing for the
adaptive selection of an appropriate binarization threshold based on
the image during the prediction stage. The main conclusions are as
follows:

1) The integration of the convolutional block attention module
(CBAM) into the differentiable binarization network (DBNet)
obtained richer semantic information and extracted more adequate
features. The detection precision of CBAM-DBNet was 3.02
percentage points higher than that of DBNet;

2) In the RPF image detection experiment, the P value of
CBAM-DBNet was 85.81%, the value of R was 82.69%, and the F1
value was 84.22%, which was 1.09 percentage points higher than
the original DBNet in the comprehensive index F1 value;

3) The binarization threshold of each image could be adaptively

obtained based on the CBAM-DBNet;

4) In the RPF image segmentation experiment, the CBAM-
DBNet was also better than methods DBNet and Iterative
Threshold. Using the CBAM-DBNet to establish an RPF’s coverage
rate prediction model with MAPE, RMSE, and MAE of 0.276,
0.366, and 0.605, respectively;

5) The results indicated that robust, accurate, and fast
prediction of RPF pollution can be achieved based on UAV imaging
and the CBAM-DBNet.

In the future, we will collect multiple types of residual plastic
film image data to improve the robustness and adaptability of
the model.
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