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Abstract: It is challenging to estimate the air exchange rate (AER) dynamically in naturally ventilated livestock buildings such 
as dairy houses due to the influence of complex and variable outdoor environmental factors, large opening ratios, and the 
confusion of inflow and outflow at openings.  This makes it difficult to efficiently regulate the opening ratio to meet the 
ventilation requirements in naturally ventilated livestock buildings.  In this study, the air exchange rates of naturally ventilated 
cattle houses (NVCHs) in different seasons and opening ratios were obtained through field measurements and computational 
fluid dynamics (CFD) simulations.  A fast and efficient machine learning framework was proposed and examined to predict 
AER based on the gradient boosting decision tree (GBDT) combined with Bayesian optimization.  Compared with commonly 
used machine learning models such as multilayer perceptrons (MLPs) and support vector machines (SVMs), the proposed 
GBDT model has higher prediction accuracy and can avoid falling easily into local optima.  Compared with the existing 
mechanical model based on the Bernoulli equation, the proposed GBDT model showed a slightly higher prediction than the 
mechanistic model and was much easier to use in AER estimation when inputting easily collected environmental factors in 
practical applications.  Using Bayesian optimization could dramatically reduce the computing time when determining the 
optimal hyperparameter for establishing the GBDT model, dramatically saving on computing resources.  Based on the 
Bayesian optimized GBDT model, the desirable opening ratio of the side curtain can be determined for automatically regulating 
the AER of cattle houses in future applications. 
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1  Introduction 

Natural ventilation has low energy costs and is preferred for 
cattle housing[1,2].  The estimation of the air exchange rate (AER) 
is the basis of environmental control and assessing the air pollutant 
emissions in livestock houses[3].  In a naturally ventilated cattle 
house (NVCH), side curtains are commonly used to adjust the 
opening ratio (the ratio of curtain opening height to the height of 
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the sidewall vent) of the sidewall to improve the indoor climate and 
animal comfort[4].  The AER varies drastically under different 
opening ratios and outdoor environmental conditions[4].  The 
orifice equation method, also known as the theoretical modeling 
method based on the Bernoulli equation, is often applied to 
estimate the AER of naturally ventilated houses[5,6].  Theoretically, 
the orifice equation method can be used to control the ventilation 
system in NVCH.  However, the assumption of uniformly 
distributed pressure and velocity is questionable in a large opening 
(opening ratio more than 10%) as the condition in cattle houses[2,7].  
This relies on some empirical coefficients that vary greatly in 
different conditions[5,7].  The authors believe that the orifice 
equation method is more suitable for ventilation design rather than 
real-time regulation of AERs in NVCH. 

Alternatively, methods based on the mass balance principle or 
the energy balance principle, including the heat balance method, 
H2O balance method, CO2 balance method, and tracer gas method, 
are widely used in field measurements to monitor AERs in 
naturally ventilated livestock houses[1,8-11].  These indirect 
methods do not relate AERs to the opening ratio, which instructs 
the execution of the ventilation control system.  Moreover, poor 
air mixing or large variations in spatial concentration in NVCH 
makes it difficult to arrange the sensors in reasonable positions[7,12].  
These issues make it difficult to use real-time regulation for the 
ventilation system of NVCHs.  More knowledge or methods 
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relating AER to the opening ratio and environmental factors are 
required for real-time regulation of the ventilation system in 
NVCHs[5]. 

With the development of computer science and artificial 
intelligence, new tools such as computational fluid dynamics (CFD) 
and machine learning are increasingly used to achieve ventilation 
rates under different boundary conditions[13,14].  This method may 
provide a solution to estimating AERs in NVCH.  For example, 
Shen et al.[15] established a statistical model based on response 
surface methodology (RSM) to predict the ventilation rate in 
NVCH using the data obtained by CFD simulation under different 
openings and wind speeds.  Ayata et al. developed an Artificial 
Neural Network (ANN) model to predict indoor air velocity trained 
by CFD simulation data, which provided the indoor airflow 
parameters of urban natural ventilation buildings such as wind 
directions, AER, and the building’s opening conditions[16].  
Vogeleer et al. established an ANN model for the fast estimation of 
AERs in a naturally ventilated test facility with measured 2D or 3D 
local air velocity[17].  There is no doubt that the studies mentioned 
above are important in estimating AER in NVCH.  The main 
concern is that the layout and structure of the cattle barn for model 
development are very different from those in China.  Furthermore, 
traditional ANN models are more often adopted, which require a 
larger sample size for model training, longer computation time, and 
easy trapping in a locally optimal solution[18,19].  As mentioned 
above, this study proposed a Bayesian optimized gradient boosting 
decision tree (GBDT) method to estimate AERs in NVCH based on 
the mechanism of natural ventilation.  The GBDT model is an 
integration algorithm based on a decision tree that uses an additive 
model to accumulate the residuals of multiple decision trees to 
achieve the minimum errors of classification or regression in the 
training process[20].  Compared with the traditional ANN model, 
the GBDT model has the advantage of high prediction accuracy 
when processing data with low dimensions and small sample sizes.  
This highly matches the data characteristics when estimating AER 
in NVCH[21,22]. 

The objective of this study is to develop a machine learning 
algorithm framework based on a Bayesian-optimized GBDT model 
to estimate AERs in NVCHs and to examine the effectiveness and 
reliability of the proposed algorithm framework to seek a potential 
method for decision-making in regulating the side curtains in 
NVCHs.  Inputs of the GBDT model were selected based on the 
opening ratio and the environmental factors driven by natural 
ventilation, which allows the model to be used in environmental 
control systems.  Comparisons were made with the traditional 
ANN model, the widely used support vector machine (SVM) in 
machine learning and the machine model to evaluate the 
performance of the GBDT model in estimating AER.  To reduce 
the computation time and improve the adaptive ability of the model, 
the Bayesian algorithm was introduced into the model to 
automatically obtain the optimized hyperparameters in GBDT.  
The Bayesian algorithm is a probability-based optimal method in 
automatic machine learning.  It has been successfully applied in 
environmental monitoring and sensor networks, robotics, and 
reinforcement learning[23].  To improve the generalization ability 
of the proposed model, field measurements were conducted to 
monitor the actual AER in two NVCHs in different seasons, and 
CFD simulation was adopted to obtain the AER at various opening 
ratios.  The developed Bayesian optimized GBDT model can be 
exported as a ‘joblib’ file and deployed to the server of the web 
framework or adapted and inserted into the environmental 

regulatory system in future applications. 

2  Materials and methods 

2.1  AER monitoring in field measurements 
Field measurements were conducted to monitor AER in two 

commercial free-stall dairy cattle houses in different seasons in 
Beijing and Tianjin, China.  The cattle house in Beijing (H1) is  
92 m long, 28 m wide, 3.5 m eave high, and 6.3 m ridge high.  
The other one in Tianjin (H2) is 186 m long, 31 m wide, 2.7 m 
eave high, and 10.8 m ridge high.  Both H1 and H2 are naturally 
ventilated with two sidewall curtains and a central ventilation 
ridge.  Figure 1 shows the layout of the experimental dairy cattle 
houses. 

Field measurements in H1 were conducted in July and August 
2019 when two sidewall curtains and ventilation ridges were fully 
open as the requirement of ventilation in practical production in 
summer.  Indoor carbon dioxide (CO2) was continuously sampled 
(Figure 1a, A1-A5) by a six-channel multiplexer (Innova 1409, 
USA) at a height of 1.5 m and synchronously analyzed by a 
photoacoustic multigas monitor (Innova 1512i, USA) every 5 min.  
Background CO2 was sampled 30 m away from H1 upwind.  
Indoor air temperature (Ta), relative humidity (RH), and airspeed 
were recorded at a height of 2 m at nine points (Figure 1a, T1-T9, 
W1-W9) by a recorder (Apresys 179A-TH, USA) and hot-wire 
anemometer (XL62 WR1ID4, China).  Ta, RH, wind speed (WS) 
and direction (WD) in background open air were recorded by a 
weather station (WS1800, China) at a height of 2.5 m and 150.0 m 
away from H1. 

For H2, field measurements were conducted in December 2020.  
Sidewall curtains to the north were fully closed and those to the 
south were fully open as the requirement of ventilation in practical 
production in winter.  Similarly, indoor and outdoor CO2 were 
sampled (Figure 1b) and analyzed by the six-channel multiplexer 
and multigas monitor.  Indoor Ta and RH were recorded at a 
height of 2.1 m at six points (Figure 1b, T1-T6).  Air velocities at 
the openings of the side curtains were monitored by ultrasonic 3D 
anemometers (Wind Master, UK) at a height of 1 m in four 
locations at the opening (Figure 1b, W1-W4).  Outdoor Ta, RH, 
and air velocity upwind were monitored by a recorder and an 
ultrasonic 3D anemometer at a height of 5 m. 

AERs in the two experimental houses were calculated by the 
CO2 balance method, which was recommended by the International 
Commission of Agricultural Engineering (CIGR) and described in 
Equation (1)[24].  To improve the reliability of the calculated AER 
(h-1), ∆Cco2 values lower than 53.9 mg/m3 were removed, as 
suggested by Ding et al.[7] 
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where, n is the number of housed cows; ρ is the density of CO2, 
1.977 g/L; PCO2 is the production of CO2 for each cow, which can 

be estimated by the heat production through body weight and air 
temperature as shown in Equations (2) and (3)[24]; ∆CCO2 is the 

concentration difference of indoor and outdoor CO2, mg/m3; V is 
the volume of measured NVCH, m3; HPUt is the heat production 
unit at a certain air temperature of t, 1000 W-1; a is a dimensionless 
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constant representing the amplitude of the sine function, which is 
0.22 in the case of free-ranging dairy cows[24]; h is the time in the 
24-hour system, h; hmin is the time corresponding to the minimum 

activity of dairy cows, which is 2.9 in the case of free-ranging dairy 
cows[24]; B is the body weight of dairy cows, kg; Y is the daily milk 
yield of dairy cows, kg/d; p is the number of days of pregnancy, d. 

 
a. H1              

 
b. H2 

Note: A1-A5 indicate indoor carbon dioxide sampling locations; T1-T9 indicate temperature sampling locations; W1-W9 indicate wind speed sampling locations. 
Figure 1  Layouts of sampling tubes or points in dairy cattle houses H1 and H2 (m) 

 

2.2  Numerical simulations 
A full-scale physical model for H1 was created in ICEM CFD 

(ANSYS 15.0, PA, USA), and numerical simulations were 
conducted for 144 cases to enrich the dataset when the opening 
ratios of the side curtains were 0%, 17%, 34%, 51%, 68%, and 
85%.  Different combinations of outdoor Ta, RH, WS, WD, and 
the opening ratio were considered as the boundary conditions in the 
simulation cases and are summarized in Table 1.  These boundary 
conditions were selected according to typical weather that occurred 
during field measurements by the weather station. 

 

Table 1  Boundary conditions of CFD simulations 

Season 
Outdoor 
Ta/℃ 

Outdoor 
RH/% 

Outdoor 
WS/m∙s−1 

Outdoor 
WD/(°) 

Opening 
ratio 

Number 
of cases 

Summer 
28.67±1.48 
(26.7-30.6) 

59.41±6.13 
(53.2-70.2) 

1.57±0.67 
(0.5-2.1) 

105.10±44.14 
(64.6-115.2) 

0-85% 54 

Winter 
−4.31±3.61 
(−9.0-2.0) 

76.90±21.13 
(37.0-94.2) 

2.26±2.52 
(0.5-8.6) 

159.54±116.84 
(0.0-351.3) 

0-85% 36* 

Transition 
season 

5.36±3.63 
(−1.0-8.6) 

41.08±18.79 
(21.4-73.9) 

2.58±2.00 
(0.30-7.20) 

98.89±120.06 
(0.0-320.3) 

0-85% 54 

Note: Some cases in winter were removed due to a failure of convergence in the 
simulation.  The 36 cases are the remaining effective cases. 

The CFD model was verified, and the details can be found in 
Li et al.[4]  This was based on a full-scale dairy building model 
with the basic geometry shown in Figure 2.  Considering the 
influence of the adjacent buildings around the target dairy house in 
a real situation, two adjacent buildings with sidewalls next to the 
target dairy building were included in CFD modeling.  Thus, 
taking the target dairy house and the surrounding buildings as a 
whole target, this study adopts a domain size of 5H×15H×15H 
away from the whole target for CFD modeling, where H is the 
ridge height of the target dairy building. 

The geometry was meshed and imported to Fluent for CFD 
simulation.  The minimum size of the mesh was 32 mm, and the 
surface of the cows was encrypted.  A grid independence analysis 
was conducted to ensure that the resolution of the mesh did not 
influence the results.  A renormalization group (RNG) k-ε 
turbulence model was used to determine turbulence effects.  The 
finite volume method was used as the discrete method of the 
governing equation, and the SIMPLEC algorithm was used for the 
pressure-speed coupling.  The kinetic energy and turbulent flow 
energy were selected in the second-order upwind style. 
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 Target dairy building    Meteorological station 

 
a. Simulated dairy building          b. Entire computational domain 

Figure 2  Geometry model of simulated dairy building and entire 
computational domain in CFD modelling[4] 

 

2.3  Methodology in AER modelling 
2.3.1  Gradient boosting decision tree 

The prediction of AER in an environmental control system 
usually requires real-time processing for a large quantity of data.  
The GBDT model is a classical feature selection integration model 
based on a decision tree, which is interpretable and fast in data 
processing, and the issue of overfitting can be effectively avoided 
by limiting the hyperparameters in the model[25]. 

GBDT is an iterative decision tree algorithm that can be 
regarded as an additive model (Equation (4)) composed of M 
trees[26]. 
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where, x is the input; w is the parameter in the model; h is the 
regression tree; α is the weight of each tree.  Given a training 

dataset T={(x1, y1), (x2, y2), …, (xN, yN)}, where, xi∈χ⊆Rn and χ is 

the input space, yi∈Y⊆R and Y is the output space.  Denoting the 

loss function as L(y, f(x)), the goal of this study was to obtain the 
final regression tree FM.  Initialize the first weak learner as 
follows: 
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To establish M-classified regression trees, m is the number of 
trees (m=1, 2, 3, …, M), and i is the number of samples (i=1, 2, 
3, …, N).  Then, calculate the negative gradient of the loss 
function corresponding to the mth tree. 
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For i=1, 2, 3, …, N, the classification and regression tree (CART) 
is used to fit the data (xi, rm,r) to obtain the mth regression tree.  
The corresponding leaf node area is Rm,j, where j=1, 2, 3, …, Jm, 
and Jm is the number of leaf nodes of the mth regression tree. 

For the Jm leaf node regions (j=1, 2, 3, …, Jm), calculate the 
best- fit value using the following equations. 
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Update the strong learner Fm(x): 
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Obtain the expression of strong learner FM(x): 
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2.3.2  Bayesian optimization 
When applying the GBDT model to predict AER, it is 

necessary to determine its optimal combination of hyperparameters.  
Considering that machine learning easily falls into a local optimal 
solution, this paper used the Bayesian optimization algorithm, 
which is a global parameter optimization algorithm, to optimize the 
model parameters.  Based on the Bayesian theorem, the Bayesian 
optimization algorithm obtains the next-most-potential 

hyperparameter value Xi by maximizing the acquisition function, 
calculates the objective function value f(Xi), adds the newly 
obtained (Xi, f(Xi)) to the known evaluation point set D, and 
updates dataset D to obtain the optimal solution in a cycle[23].  The 
sequential model-based optimization steps of Bayesian 
optimization are as follows: 

Step 1  Input f, χ, S, M; 
Step 2  D←InitSamples (f, χ); 
Step 3  For i←|D| to T do; 
Step 4  p(y|X, D)←FiteModel(M(GP), D); 
Step 5  Xi←argmax S(X, p(y|X, D)); 
Step 6  yi←f(Xi); 

Step 7  D←D∪(Xi, yi) 

where, χ is the hyperparametric search space; X={X1, X2, X3, …, Xn} 
represents a group of super parameter combinations; Xi is a set of 
super parameters selected by the acquisition function; T is the total 
number of function evaluations; f represents the function learning 
model, D=(X1, y1), …, (Xn, yn) represents a dataset composed of 
several pairs of data; M is the probabilistic regression model; S is 
the acquisition function. 

As the Bayesian optimization algorithm can make full use of 
historical information, it has a significantly higher efficiency 
compared with the other optimization methods.  The probabilistic 
regression model and acquisition function are two core parts of 
Bayesian optimization.  The Gaussian process (GP) was adopted 
as the probabilistic regression model in this study.  It is the most 
widely used nonparametric model for probabilistic regression, has a 
higher expansibility, and can usually obtain satisfactory prediction 
results[27].  The acquisition function refers to the function mapped 
from input, observation, and hyperparametric space to real number 
space[28].  It is necessary to balance the relationship between 
utilization and exploration and weigh the distribution of evaluation 
points.  To reduce the training error caused by sampling 
randomness, 10-fold cross-validation was applied in the Bayesian 
optimization search[29]. 
2.3.3  Modelization 

Preprocessing, such as outlier discarding and normalization, 
was performed on the data from field measurements and CFD 
simulations to obtain datasets for AER modelling.  There are 
twelve factors in the dataset: indoor Ta, indoor RH, outdoor Ta, 
outdoor RH, indoor and outdoor temperature difference (∆Ta), 
indoor and outdoor humidity difference (∆RH), wind speed (Vout), 
wind direction (Vdir), north opening ratio (Nopening), south 
opening ratio (Sopening), AER and season.  There is an obvious 
stratification after visualization of the collected environmental data 
due to the seasonal variation in measurements.  Moreover, ∆Ta 
and ∆RH are the driving force and natural ventilation and its mass 
transfer, respectively.  Thus, these three factors (∆Ta, ∆RH, and 
season) were included in the dataset.  80% of the data in the 
dataset were randomly selected and used for model training.  The 
remaining 20% of the data was used for model validation. 

Figure 3 shows the methodological framework to predict AER 
in this study.  The GBDT model was trained by the 10-fold 
cross-validation method to predict AER.  Hyperparameters in the 
models were first obtained by the grid search method based on the 
mean square error.  To evaluate the effectiveness of GBDT, the 
model performance was compared with the commonly used SVM 
model and the multilayer perceptron (MLP), a feedforward ANN 
model.  Then, Bayesian optimization was applied to the GBDT 
model to optimize the hyperparameters in the model.  When 
Bayesian optimization was used to optimize the GBDT model, the 
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different hyperparameter combinations of GBDT were taken as the 
independent variables, and the mean square error obtained by the 
cross-validation evaluation was taken as the output of the Bayesian 
framework.  Iterations were conducted until the loss function was 
minimized. 

 
Figure 3  Overview of a methodological framework to predict 

AER by Bayesian optimized GBDT 
 

2.4  Model evaluation 
The mean absolute error (MAE), mean absolute percentage 

error (MAPE), the goodness of fit (R2), and mean square error 
(MSE) were used to evaluate the models in predicting AER. 
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where, m is the number of samples; ˆiy  is the predicted results of 

the model; yi is the measured or CFD simulated results (true values); 
y  is the average of true values. 

3  Results and discussion 

3.1  Evaluation of GBDT model 
As mentioned above, the effectiveness of GBDT model was 

evaluated by comparing it with the commonly used ANN (MLP 
used in this study) and SVM models.  Table 2 lists the 
hyperparameters obtained through Grid Search, a conventional 
method to automatically find the optimal parameters, in established 
models to estimate the AER in NVCH.  The quantitative 
evaluators of different models are also listed in Table 2.  R2 is the 
fraction of total variation that is explained by the regression, which 
ranges from 0 to 1.  The higher the R2, the better the explanation 
effect of the regression model.  The authors believe that the model 
is more reliable when R2 is higher than 0.8.  MSE and MAE 
evaluate the prediction accuracy, which ranges from 0 to infinity.  
The lower the MSE and MAE, the better the accuracy of the 
prediction model.  MAPE evaluates the relative errors between the 
actual and the prediction, which range from 0% to infinity.  This 
indicates a perfect match when MAPE is 0% and a very poor 

prediction when MAPE is over 100%.  As listed in Table 2, the 
MLP model shows the poorest performance, while the GBDT 
model had the highest R2 and lowest MSE, MAE, and MAPE, 
showing the best performance. 

 

Table 2  Hyperparameters in model based on grid search and 
evaluation of different models with grid search in predicting 

AER 

Model Hyperparameter Range 
Optimized 

value 
R2 MSE MAE MAPE 

SVM 
C [10-3, 10] 3.0786 

0.63 0.41 0.45 11% 
nu [10-3, 1] 0.5499 

MLP 

hidden_layer_sizes [1, 50] 28 

0.35 0.72 0.57 17% alpha [10-3, 1] 0.0016 

learning_rate_init [10-4, 1] 0.0656 

GBDT 

learning_rate [10-3, 1] 0.0530 

0.84 0.17 0.28 7% 
max_depth [2, 5] 4 

n_estimators [90, 120] 100 

min_samples_leaf [1, 3] 2 

Note: SVM: Support Vector Machine; MLP: Multilayer Perceptron; GBDT: 
Gradient Boosting Decision Tree; MSE: Mean Square Error; MAE: Mean 
Absolute Error; MAPE: Mean Absolute Percentage Error. 

 

Figure 4 demonstrates the residual of the three models.  The 
absolute residual between the predicted and measured AER can 
intuitively reflect the performance of each model.  The lower the 
absolute residual, the better.  As shown in Figure 4, there were 
significantly smaller prediction residuals for the GBDT model than 
for the SVM and MLP models.  Its residuals tended to be reduced 
with increasing measured AER. 

 
Figure 4  Comparison between measured and predicted AER of 

different models 
 

3.2  Bayesian optimized GBDT 
Grid search was first adopted in the three models introduced in 

Section 3.1 to obtain the optimal hyperparameter.  However, the 
Grid Search method requires considerable computing resources and 
takes a long time when searching for hyperparameters.  
Alternatively, Bayesian optimization was conducted and compared 
with the grid search method to obtain the hyperparameters in 
GBDT in estimating AER. 

The ranges of max_depth, n_estimators, learning_rate, and 
subsample were set as [10-3, 1], [2, 5], [90, 120], and [1, 3], 
respectively.  Then, the two mentioned optimization methods 
were used to calculate the optimal combination hyperparameter.  
It took 12 284 s for Grid Search to find the optimal combination of 
hyperparameters.  Bayesian optimization required 94 s for 97 
iterations, dramatically reducing the computation time.  Bayesian 
optimization is an active optimization based on the results of 
iteration, which is overall stable in the search process and can 
obtain the optimal combination with less time.  However, Grid 
Search optimization depends on the number of iterations, and the 
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emergence of an optimal combination has high randomness, 
resulting in low efficiency.  Meanwhile, the R2, MSE, MAE, and 
MAPE of the Bayesian optimized GBDT model were close and 
even better than those of the optimized GBDT (Table 3).  This 
suggests that Bayesian optimization is more effective than grid 
search.  The Bayesian optimized GBDT can be a reliable model 
that is precise enough to estimate AER and can greatly save on 
computing resources. 

 

Table 3  Comparisons between Bayesian and Grid Search 
optimized GBDT 

Items Indicators 
Bayesian  

optimized GBDT 
Grid Search  

optimized GBDT 

Performance 
Evaluation 

R2 0.86 0.84 

MSE 0.17 0.17 

MAE 0.27 0.28 

MAPE 7% 7% 

Computation time 94 s 12 284 s 

Hyperparameters 

learning rate 0.055 0.053 

max_depth 4 4 

n_estimators 98 100 

min_samples_leaf 2 2 
 

Table 3 also lists the obtained hyperparameters through 
different methods.  They were very close to each other.  In the 
process of hyperparameter optimization, the variations between 
hyperparameters and validation scores were plotted to illustrate and 
verify the effectiveness of hyperparameter selection.  Figure 5 
demonstrates the verification curves of four parameters in the 
GBDT model: max_depth, n_estimators, learning_rate, and 
subsample.  The max_depth represents the maximum depth of 
each regression estimator, which limits the number of nodes in the 
tree.  The n_estimators indicate the number of boosting phases to 
be executed.  Learning_rate represents the learning rate, which 
controls the contribution of each tree.  Subsample represents the 
proportion of samples taken, which is used to fit the score of a 
single base learner’s sample.  The plot was drawn using the 
validation score data from 10-fold cross-validation with its mean 
(solid curve in Figure 5) and variance (error band in Figure 5). 

 
a. max_depth  b. n_estimators 

 
c. learning_rate  d. min_samples_leaf 

 

Figure 5  Verification curve of hyperparameters in GBDT model 
 

Figure 5 shows that the value of each hyperparameter falls in 
the region where R2 is over 0.8, which ensures the effectiveness of 
the selected hyperparameters in the GBDT model.  With the 
monotonous change in hyperparameters, R2 gradually tends to be 

stable, while the optimal parameter does not appear where the 
stable R2 has just been reached.  This is because the 
hyperparameters are not independent of each other, and the optimal 
combination of a local parameter does not represent the optimal 
combination of the global parameter. 
3.3  Importance analysis of inputs 

The influence of the input was compared in the process of 
building the GBDT model.  Figure 6 shows the importance of 
inputs in the Bayesian-optimized GBDT.  When all 11 inputs 
were used in building the model, the south opening ratio, wind 
speed, north opening ratio, and ∆Ta had a great impact on the 
model.  This was followed by outdoor Ta, ∆RH, wind direction, 
indoor Ta, outdoor RH and indoor RH.  The temperature 
difference and outdoor wind speed are the driving forces of natural 
ventilation[5].  At the same time, the outdoor wind speed and 
direction affect the differences in Ta, RH, and gas concentration 
inside and outside the NVCH[8].  The airflow rate in an NVCH is 
dominated by the outdoor wind speed when the opening ratio and 
wind speed are high enough, making the temperature difference 
decrease and the impact of other environmental factors small 
enough to be ignored.  The opening ratio, wind speed, and 
temperature difference were the most important inputs to the 
GBDT model, and the temperature difference was less important 
than the opening ratio and wind speed.  This is consistent with the 
mechanism of natural ventilation, which verifies the reliability of 
the model.  The influence of the season on the modelling was 
almost 0.  This is because there is a strong correlation between 
season and temperature inside and outside the house, resulting in 
the least importance in the model. 

 
Figure 6  Importance of inputs and comparison of input 

combinations in GBDT 
 

Two groups of comparative tests were carried out to explore 
the influence of relevant inputs in modelling.  One test removed 
the inputs of ∆Ta and ∆RH, as they can be calculated through Ta or 
RH inside and outside the dairy house.  The other test removed 
the ∆Ta, ∆RH, and season, as the season shows the least 
importance in modelling.  As shown in Figure 6, the removal of 
relevant inputs has little effect on the R2, MSE, MAE, and MAPE 
of the established GBDT model in estimating AER, suggesting that 
∆Ta, ∆RH, and season can be excluded to make full use of the 
remaining information to make the model more concise.  However, 
the importance of the remaining factors changed slightly after the 
removal of inputs.  The importance of outdoor Ta greatly 
increased after ∆Ta was removed and became the third most 
important input in the GBDT model.  As shown in Figure 6, the 
outdoor Ta had larger importance of inputs than indoor Ta, which 
suggests that AER was more dependent on outdoor Ta than indoor 
Ta when using the GBDT model. 
3.4  Comparisons with existing models 

The established GBDT model was validated and compared  
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with the existing models using the verification dataset from field 
measurements.  The mechanism model based on the Bernoulli 
equation has a good explanation for the results and estimates the 
AER according to the opening area, wind speed at the opening, and 
empirical coefficients[5,7].  

 
Figure 7  Comparison of estimated AER by different models 

 

As shown in Figure 7, the curves between the AER predicted 
by the GBDT model and the mechanism model are very close to 
each other.  The average difference in AER estimated between the 
mechanism model and the Bayesian-optimized GBDT model was 
5.0 h-1 (20.6%).  Using the measured AER from field 
measurements as the baseline, the averaged estimation errors of the 
mechanism model and the GBDT model in this study were 26.1% 
and 23.5%, respectively.  The developed GBDT model showed a 
slightly lower error than the mechanism model.  This further 
verifies the validity of the Bayesian-optimized GBDT model in this 
study.  Compared with the mechanism model, the GBDT model 
does not rely on the empirical coefficient whose value varies with 
the opening and only needs to measure the outdoor wind speed 
instead of the wind speeds at multiple openings.  This makes the 
developed GBDT model much easier to use for real-time 
environmental control in practical applications. 

4  Conclusions  

Field measurements and CFD simulations were conducted to 
obtain the AER in NVCHs under different environmental 
conditions.  A Bayesian-optimized GBDT model was proposed to 
predict AER to adjust the side opening for ventilation.  The 
proposed model can improve the applicability to small samples and 
avoid the drawbacks of easily falling into a local optimum.  Its 
effectiveness and reliability were examined, and the results showed 
the following: 

1) Compared with Grid Search, Bayesian optimization can 
make full use of historical information, greatly reduce the 
computation time, and improve the efficiency of hyperparameter 
search in GBDT modelling; 

2) The GBDT model can be more concise with effective 
performance in predicting the AER after removing the inputs of 
season, air temperature, and humidity difference from the original 
11 parameters.  The model was greatly dependent on the opening 
ratio, outdoor wind speed, and outdoor air temperature; 

3) The proposed GBDT model had an R2 of 0.84, showing a 
better performance than traditional machine learning models such 
as MLP and SVM.  Compared with the mechanism model, it had 
a similar or even slightly higher estimation accuracy but much 
easier obtained inputs.  This makes it more applicable for use in 
practical applications for real-time environmental control. 
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