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Fine-tuning faster region-based convolution neural networks for
detecting poultry feeding behaviors
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Abstract: Poultry feeding behaviors provide valuable information for system design and farm management. This study
developed poultry feeding behavior detectors using the faster region-based convolution neural network (faster R-CNN). Twenty
50-day-old Jingfen layer pullets were kept in four experimental compartments and could freely move between adjacent ones.
Four light colors (white, red, green, and blue) were supplied to create environmental variations for detector development. A
camera was installed atop each compartment to capture images for detector development. Several hyperparameters were fine-
tuned to determine the optimal one. Based on the trade-off strategies between detection accuracy and processing speed, the
following strategies were deployed to develop the detector: feature extractor of inception V2, the model trained with common
objects in context dataset, fixed shape_resizer with the size of 600x600 pixels, kernel stride of 8300 proposals, and dynamic
learning rate. The final detector had 95.7% recall, 94.2% average precision, 94.9% F1 score, 23.5 mm root mean square error,
and 8.3 fps processing speed, indicating decent performance for detecting poultry feeding behaviors. With the trained detector,
temporal and spatial feeding behaviors of individual poultry can be successfully characterized. It is concluded that the faster R-
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CNN should be a useful tool to continuously monitor poultry feeding behaviors in group settings.
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1 Introduction

Poultry feeding is undoubtedly among core concerns for
farmers as it can influence economic benefits and reflect poultry
physiological and welfare status. Poultry feeding responses vary
with different environmental stimuli"!, rearing systems, genetics®,
social interactions®, and sensory factors. Abnormal feeding
behaviors are identified as a sign of illness for food animal®. As
such, assessment of poultry feeding behaviors provides scientific
evidence for welfare-based management and efficacy of resource
allowance. In modern intensive poultry production systems,
monitoring individual poultry’s feeding behaviors during the whole
lifetime is almost impossible for farmers and researchers, due to the
labor- and time-intensive nature of the task. Automated solutions to
assist farm management are warranted.

Current precision livestock farming (PLF) technologies provide
a possibility to automatically measure poultry feeding behaviors.
For example, weighing scales were utilized to monitor poultry feed
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intake in real-time!. Although the systems could accurately inspect
the feeding behaviors of group-housed poultry in the weighing area,
they could not differentiate individual feeding poultry, thus missing
valuable information of individual variations. Radio frequency
identification (RFID) systems offered solutions to detect multiple
individual feeding birds by registering tagged birds in detecting
ranges of antennas®’. However, the systems are rather expensive
and complex to implement in poultry houses. The attached tags
need frequent adjustment to avoid bird discomfort as poultry grow
bigger, and they may get lost during the inspection period.
Furthermore, the sensitivity of the systems may be blocked by litter,
metal materials, and animals. These challenges limit the system
application in lab scales rather than commercial scales. Image
processing was another technology used to continuously monitor
poultry feeding in commercial scales because it was low-cost and
non-invasive®. Nevertheless, the processing algorithms were
subject to complexity of image background, environmental
conditions, bird sizes, and bird postures, thus resulting in poor
generalization. Additionally, the above-mentioned methods mainly
recorded temporal poultry feeding behaviors (e.g., feeding time,
feeding bout, feeding duration per bout, etc.) and ignore spatial
information including inter-distance of feeding birds and bird
distribution along feeders, which hinders better understanding of
poultry feeding behaviors and resource allowance. Convolutional
neural networks (CNNs) are increasingly applied in livestock
farming to facilitate farm management and may have the potential
to overcome the above-mentioned drawbacks of the
technologies'*'"

Convolutional neural networks can detect poultry without
introducing human interference and invasion. The CNNs can adapt
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to various detection environments if they are fine-tuned"”. Based on
some geometric features of bounding boxes around objects of
concern, the CNNs may have the potential to track individual
poultry continuously. Quite a few efficient CNN models have been
developed in recent years, varying in function, performance, and
architecture. Among them, the faster region-based CNN (faster R-
CNN) had decent accuracy and processing speed for object
detection based on our previous experiment''. The faster R-CNN
has been widely applied for a variety of agriculture applications and
showed good generalization among these applications (Table 1).
Thus, the faster R-CNN may have the potential for detecting poultry
feeding behaviors, though the detection performance remains to be
verified.

Table 1 Applications of faster region-based convolutional
neural network in precision agriculture

Performance Reference
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Note:-Fadicates missing information in a reference. AP is average precision,
mAP is mean average precision, IOU is intersection over union, and fps is frames
per second.

The objective of this research was to develop faster R-CNN
feeding behavior detectors to detect feeding behavior using layer
pullets as examples. The performance of feeding detection was
compared for various feature extractors, pre-trained models, image
resizers, sizes of kernel stride, number of proposals, and learning
rate. With the trained detector, temporal and spatial feeding
behaviors of individual poultry were characterized.

2 Materials and methods

2.1 Animal, housing, and management
The experiment was conducted at China Agricultural
University. Twenty 50-day-old Jingfen layer pullets (Jingfen;

Beijing Huadu Yukou Poultry Co., Ltd., Beijing, China) were kept
in a lighting preference test system containing four compartments
with each measuring 1.2 m (length)x0.96 m (width)x2.0 m
(height)*. When 20 pullets were present together in a compartment,
the stocking density was 361 cm’/pullet, which was higher than that
recommended by Hy-Line International 2013)®" for cage-reared
pullets (100 to 200 cm?*/pullet). The major purpose of this research
is to evaluate the model rather than analyze bird behavior. Dynamic
numbers of birds in each compartment can create variations for
model development. The four compartments were arranged in a
straight line, and adjacent compartments were connected with an
open small door (0.3 m in width and 0.4 m in height). Such a design
can ensure that birds go through different compartments and
produce various numbers of feeding birds in a compartment, which
can create image variations for detector development. One trough
feeder (0.96 m wide) was installed with each compartment, and an
infrared camera (V1.1.0, Zhejiang Dahua Technology Co., Ltd.,
Hangzhou, China) was mounted atop each compartment to monitor
pullet activity. Four light colors (white, green, red, and blue) were
assigned to respective compartments and introduced extra image
variations for detector development. White light is typically used in
poultry production. Green and blue lights are beneficial for bird
body development, and red light can stimulate bird movement.
Understanding the feeding behaviors under the four light colors
provides critical insights in precision poultry management. The light
intensity was 0.1 W/m? at bird head level, and the light program was
12L:12D (lights ON at 8:00 and OFF at 20:00). Temperature and
relative humidity were maintained at (23.1£0.5)°C and (20+1)%.
2.2 Feeding behavior definition and labeling

The recorded videos were converted into images at a rate of
one frame per second (1 fps), and each image was 1280%720 pixels.
Pullets were defined as feeding when their heads were present atop
the feeder trough. Images from 9-10 d with 10 min intervals were
labeled using the open-source software (Labellmg), and annotations
were saved as .xml files in PASCAL VOC format for further
processing. Five thousand images containing at least one feeding
bird per image were selected from each compartment, resulting in a
total of 20 000 images for detector training, validation, and testing.
2.3 Faster region-based convolutional neural network

Faster R-CNN is an extension of R-CNN and fast R-CNN
proposed by Ren et al.”™®. The structure of the network is shown in
Figure 1. Faster R-CNN has two stages: the first stage is the region
proposal network (RPN), and the second stage is the box classifier
using the proposed regions for prediction. In Figure 1, an input
image is fed into the feature extractor to produce feature maps. The
RPN runs on the maps to proposed regions which include target
objects, feeding birds in this case. The regions are tiled onto the
feature maps. Then regions of interest (ROI) are proposed and

[ RPN |—»] Regions |
[/
‘ Feature Feature ROI
i extractor maps pooling
Scores |4
I 4
‘ Resized
\ L Class [« FC layer |<—| proposals
Bounding
] boxes |

Figure 1 ~Schematic illustration of the faster region-based
convolutional neural network (RPN is region proposal network and
ROI is region of interest. A feeding bird is enclosed within a green

bounding box after the network processing)
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pooled using average/max pooling. As a result, the ROI/proposals
are resized into uniform sizes, and the resized proposals are
connected with fully-connected (FC) layers to produce scores, class,
and bounding boxes, which are visualized in the original images
simultaneously.
2.4 Overall strategy for training, validation, and testing

The 20 000 images were stratified into training, validation, and
testing sets. The training set had 13 322 images and 28 347 feeding
birds, the validation set had 1200 images and 3508 feeding birds,
and the testing set had 4000 images and 10 376 feeding birds, as
listed in Table 2. The detectors were trained with the training set,
and resultant models were saved during training in specific iteration
periodically and validated with the validation set. The training and
validation losses, which can reflect the amount of deviation between
ground truth and prediction, were evaluated as proposed by Ren et
al.?® and visualized in an open-source platform, Tensor Board.
Based on observation, if the training and validation losses both kept
decreasing, the models may be underfitted and need more training;
while if the training loss kept decreasing but validation loss
rebounded to increase, the models may be overfitted. To that end,
training should be stopped, and final models were saved
accordingly for evaluation on the hold-out dataset, the testing set.
The losses were other aspects to be observed during the training,
and the training was deemed to be completed when training and
validation losses tended to be stable within several iterations. The
computer system used for detector training, validation, and testing
was equipped with 32 GB RAM, Intel(R) Core (TM) i7-8700K
processor, and NVIDIA GeForce GTX 1080 GPU card (Dell Inc.,
Round Rock, TX, USA).

Table 2 Data distribution for detector training, validation,
and testing

Training Validation Testing
Number of images 13 322 1200 4000
Number of feeding birds 28 347 3508 10376

2.5 Modifications for detector development

The modifications for detector development included feature
extractor, pre-trained model, image resizer, kernel stride, number of
region proposals, and learning rate. Unless specified in the sections,
the following modifications were trained with ResNetl101 feature
extractor, COCO-trained model, keep aspect ratio resizer with
600x600 pixels, 16 kernel stride, 300 proposals, and dynamic
learning rate.
2.5.1 Feature extractor

Six feature extractors were embedded into the faster R-CNN
detector and evaluated to determine the most efficient ones, which
were Inception V2, ResNet50, ResNetl101, and Inception ResNet
V2. The overall structure of these extractors is shown in Figure 2.
Inception V2 deploys a factorized design and multiple-sized filters
in parallel®. The resultant features are concatenated to form feature
maps. ResNet50 and ResNet101 are the ResNets with 50 and 101
layers, respectively. The ResNets used a shortcut connection to
build convolution blocks and feed-forward convolution to process
inputs®”. Inception ResNet V2 is the Inception network adding
residual connection”'*?. The order of complexity for these feature
extractors is: Inception V2 < ResNet50 < ResNet101 < Inception
ResNet V2.
2.5.2  Pre-trained model

The pre-trained models involved in this study were the models
trained with the COCO dataset™®!, KITTI dataset’®, FGVC dataset,

and AVA dataset®. Hereafter, they are abbreviated as COCO-
trained model, KITTI-trained model, FGVC-trained model, and
AV A-trained model, respectively. The COCO is a generic dataset,
the KITTI is a bird- and car-based dataset, the FGVC is a car-based
dataset, and the AVA is a human-based dataset. These are
commonly used datasets and easily accessed.

2.5.3 Image resizer

Three modes of resizers combined with five sizes were
evaluated. The mode of identity resizer’did not change the
image size, which was 1280x720 pixels. The other two modes were
‘keep_aspect_ratio_resizer’ and ‘fixed shape resizer’, combining
with the two sizes of 600x600 pixels and 1500%1500 pixels.
Under the former mode, the length and width for an input image
were enlarged/diminished to the required sizes, in which the length-
to-width ratio (16/9 in this case) was changed. Under the latter
mode, the ratio of the image was consistent and differences between
the original image and resized images were padded with zero
matrices. Samples of resized images with the resizers can be found
in Figure 3.

2.5.4 Size of kernel strides for feature extraction and grid anchor
generation

Figure 4 shows an example of the convolution process in which
a 4x4 kernel with stride of 8 runs on a 12x12 input results in a 2x2
output. The kernel sizes of 8 and 16 were trained and evaluated to
determine the optimal one since they are commonly used for deep
learning®®.

2.5.5 Numbers of proposals after region proposal network

Three numbers of region proposal network were tested: 100,
300, and 500. The 300 was the default setting by the original
author™. The 100 proposals were deemed sufficient to cover a
maximum of 20 pullets in a compartment. The 500 was a level
higher than the default setting and used for comparison. Higher than
500 proposals were thought to diminish the processing speed and
were not considered in this case.

2.5.6 Overall learning rate

Two types of learning rates were trained and compared. The
first one was a constant learning rate of 0.003, and the second one
was a dynamic learning rate with 0.003 for 0-10 000 iterations,
0.0003 for 10 000-20 000 iterations, and 0.000 03 for 20 000-30 000
iterations. In sum, a step-decrease learning rate can help to optimize
the training loss and obtain an optimal model™. The two learning
strategies are shown in Figure 5.

After performance comparison of the above-mentioned feature
extractors and training hyperparameters, the optimal ones were
selected to develop the feeding behavior detector.

2.6 Evaluation metrics

After the detectors were trained and validated, the hold-out
testing set was used for evaluating the trained detectors as described
in Section 2.4. The intersection over union (IOU) was used to
determine whether a feeding bird was correctly detected (Equation
1), with greater than 0.5 being true positive.

_ Areaof ground truth boxN Area of predicted box

IOU (1

" Area of ground truth boxU Area of predicted box

Precision, recall, and F1 score for detecting each feeding bird in
the images were calculated using Equations 2-4. Precision is the
ratio of correctly detected feeding birds to total detected feeding
birds. Recall is the ratio of correctly detected feeding birds to total
manually labeled feeding birds. F1 score is the harmonic mean of
precision and recall and a balance metric on comprehensively
evaluating false feeding and non-feeding cases. For the three
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Figure 2 Architecture for the feature extractors of Inception V2, ResNet50, ResNet101, and Inception ResNet V2 (‘ResNet’is residual
network and “concaf’is concatenate)

metrics, a closer to 100%

performance of a detector.

Precision =

Recall =

TP
TP+FP

TP
TP+FN

Precision X Recall

value reflects better detection Flscore=2X ———————— 4

Precision + Recall

where, TP is true positive, i.e., number of cases that a detector
2) successfully detects an existent feeding bird in an image with IOU
greater than 0.5; FP is false positive, i.e., number of cases that a
A3) detector reports a nonexistent feeding bird in an image, or IOU is
less than 0.5; and FN is false negative, i.e., number of cases that a
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Figure 3  Samples of resized images with the five resizers. It should be noted that the images are arranged for presentation and are not in real
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Figure 4 Schematic illustration of the convolution process with a
12x12 input, a 4x4 kernel, stride of 8, and 2x2 output
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Figure 5 Learning rates during the 30 000 training iterations

detector fails to detect an existent feeding bird in an image.

Average precision (AP) summarizes the shape of the precision-
recall curve and is defined as the mean precision at a set of 11
equally spaced recall levels [0, 0.1, ..., 1] (Equations (5) and (6))°".

AP[%] = 1—11 D P @) ()
}

re(0,0.1,...,1
Pimerp (r) = rp_aXP (;) (6)

where, r is level of recall at {0, 0.1, ..., 1}; P, (r) is interpolated
precision in the precision-recall curve when recall is r; Fis recall

within a wiggle piece; and P (7) is measured precision at recall 7.

Root mean square error (RMSE) of the feeding bird location
predicted by the detectors was calculated using Equation 7. The
RMSE reflects the location deviation of a predicted feeding bird
from its actual location. A conversion factor of 1.8 mm/pixel was
validated and used to convert pixel-based coordinates to real
distance.

> {G-xr+G-y0}

RMSE = |/ =2 ¥ 7

where, & and Ji are the predicted center coordinates of i* egg; x;
and y;are the /" manually labeled center coordinates; and N is the
total number of feeding birds in the images.

Processing time reported by Python 3.6 was used to evaluate
the processing speed of the detectors for processing 4000 images.
Processing speed (fps) was obtained by dividing the total images
(4000) by processing time.

Because the threshold of performance difference varied among
previous investigations, the threshold was set specifically for the
dataset. The precision, recall, F1 score, and AP were different
among the settings when the differences were over 2%, which can
help to differentiate the effects of different settings. The RMSE was
different among the settings when the difference was over 10 mm,
which was 3% of the width of the poultry body. The processing
speed was different among the settings when the difference was
over 1 fps.

2.7 Automated behavior measurement

With the final detector, one hour (11:00-12:00) of feeding data
was measured for individual pullets at 50 d of age and under white
light. The feeding behaviors were characterized as total feeding
time (min), the total number of feeder visits (times), average
feeding duration per visit (min/time), frequency of individual
feeding duration (min/time), frequency of the number of
simultaneously feeding birds, frequency of inter-bird distance of
feeding birds (mm), and spatial distribution of feeding birds along
the feeder trough.

3 Results

3.1 Detection samples

With the trained detector, individual feeding birds were
identified and enclosed with green bounding boxes, accompanied
with a class name and a confidence score. As shown in Figure 6, the
feeding birds were well categorized automatically under different
light colors and feeding scenarios.

Figure 6 Samples of detected feeding birds using the faster region-based convolution neural network feeding behavior detector (light colors

from left to right figures are white, red, green, and blue light, respectively)
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3.2 Performance of five feature extractors

Table 3 shows the detection of various feature extractors. The
AP (98.7-98.8%) and RMSE (22.1-24.9 mm) were similar among
the four feature extractors. The Inception V2 had comparable
precision (95.7%), recall (97.2%), and F1 score (96.4%) with
ResNet50 and ResNet101 but the fastest processing speed (8.1 fps).
The ResNet50 and ResNetl01 performed similarly in feeding
detection with regard to all detection performance indicators. The
Inception ResNet V2 had the highest recall (98.7%) but the lowest
precision (87.7%) and F1 score (92.9%) and the slowest processing
speed (2.1 fps). As the Inception V2 performed on equivalent or
higher levels for most of the detection performance indicators and
had the highest processing speed, it was selected as the feature
extractor to develop the feeding behavior detector in this case.

Table 3 Detection performance of pullet feeding behaviors
using five feature extractors

Feature extractor Precoi/:ion/ Re;: 1/ scob;i: % AP/% RI\H/LSHE/ Psr;)ecee;/sfi};lsg
Inception V2 95.7 97.2 96.4  98.7 22.1 8.1
ResNet50 95.0 97.4 96.2 988 258 52
ResNet101 96.8 96.0 96.4 988 265 4.7
Inception ResNet V2 87.7 98.7 929 987 249 2.1

Note: AP is average precision and RMSE is root mean square error.

3.3 Performance of the detectors trained with the weights
from four pre-trained models

Table 4 shows the detection performance using different pre-
trained models. The COCO-trained model performed similarly, in
terms of all performance indicators, with the KITTI-trained model.
The FGVC-trained model had the lowest recall (89.0%); second
lowest precision (63.0%), F1 score (73.8%), and AP (82.2%);
second highest RMSE (38.9 mm); and second slowest processing
speed (4.9 fps). The AVA-trained model had the lowest precision
(39.0%), F1 score (55.5%), and AP (70.0%), largest RMSE (51.9
mm), and slowest processing speed (4.2 fps). As the COCO-trained
model had comparable or even higher performance than others and
was trained with the most generic benchmark dataset, COCO
dataset, it was utilized to develop the feeding behavior detector.

Table 4 Detection performance of pullet feeding behaviors
trained with the weights from four pre-trained models

Precision/ Recall/  FI AP/ RMSE/ Processing
%

Pre-trained models

%  score/% % mm  speed/fps
COCO-trained model 92.9 97.9 953 99.0 224 5.1
KITTI-trained model 94.2 97.2 957 985 21.8 52
FGVC-trained model 63.0 89.0 73.8 822 389 4.9
AVA-trained model 39.0 96.0 555 70.0 487 4.2

Note: AP is average precision and RMSE is root mean square error.

3.4 Performance of various image resizers
Table 5 shows that the
keep_aspect ratio_resizer and fixed shape resizer was similar.
However, the image sizes of 600x600 pixels had at least 2.1%
higher recall and 1 fps faster processing speed than other sizes. The
precision, F1 score, AP, and RMSE were mostly similar among all
the resizers, except for the keep aspect ratio with the size of
1500x1500 pixels, which had the lowest F1 score of 93.3%. Hence,
the fixed shape resizer with the size of 600x600 pixels was
selected to develop the detector.
3.5 Performance of various kernel strides
The performance of the two kernel strides was compared

average performance of

(Table 6). The strides of 8 had 2.5% higher precision (96.0%) but
1.4 fps lower processing speed (3.7 fps) than those of 16. Other
performance indicators were similar between the two strides. As the
two strides had comparable detection performance, the one (stride
of 8) with less erroneous detection was preferred, despite slightly
compromising processing speed.

Table 5 Detection performance of pullet feeding behaviors for
different image resizers

Mode of image Size/  Precision/Recall/l F1 AP/RMSE/Processing
resizers pixels % % score/% % mm speed/fps

1280x720 943 954 949 989 24.1 39
600x600 942  97.6 959 99.0 22.1 5.1
1500x1500 93.0  93.6 93.3 984 26.2 3.6
. . 600x600  94.7 975 96.1 99.1 238 49
Fixed_shape_resizer

- - 1500x1500 94.0  95.8 949 988 26.1 2.8

Note: AP is average precision and RMSE is root mean square error.

Identity_resizer

Keep_aspect
ratio_resizer

Table 6 Detection performance of pullet feeding behaviors
using two kernel strides

Kernel  Precision/  Recall/ F1 AP/ RMSE/  Processing
strides % % score/% % mm speed/fps
8 96.0 97.1 96.6 99.2 21.6 3.7
16 93.5 97.9 95.7 99.1 23.0 5.1

Note: AP is average precision and RMSE is root mean square error.

3.6 Performance of the three numbers of proposals

Table 7 shows the performance of the detector with three
proposals. Among the three, the detector with 100 proposals had the
lowest recall (92.2%) and AP (96.3%) but the fastest processing
speed (7.7 fps). The one with 500 proposals had the lowest
precision (90.5%), F1 score (92.8%), and processing speed (3.7 fps).
The 300 proposals had the highest recall (97.1%) and F1 score
(96.0%), comparable precision (95.0%), AP (99.0%), and RMSE
(22.9 mm), and middle processing speed (5.1 fps), thus was chosen
for detector development.

Table 7 Detection performance of pullet feeding behaviors
with three numbers of proposals

Numbers of  Precision/ Recall/ F1 AP/ RMSE/ Processing
proposals % % score/% % mm speed/fps
100 96.5 92.2 94.3 96.3 19.5 7.7
300 95.0 97.1 96.0 99.0 22.9 5.1
500 90.5 95.4 92.8 97.4 27.3 3.7

Note: AP is average precision and RMSE is root mean square error.

3.7 Performance of two types of learning rates

Table 8 shows the performance of the two types of learning
rates. The constant learning rate had lower precision (91.7%) than
the dynamic one, while other performance indicators were similar
between the two rates, thus the latter was selected for detector
development.

Table 8 Detection performance of pullet feeding behaviors
with two types of learning strategies

Learning  Precision/  Recall/ F1 AP/ RMSE/  Processing
rate % % score/% % mm speed/fps

Constant 91.7 97.4 94.5 98.8 24.0 5.0

Dynamic 94.0 97.5 95.7 99.1 21.8 5.1

Note: AP is average precision and RMSE is root mean square error.

The following strategies were deployed to develop the final
feeding behavior detector: feature extractor of Inception V2, COCO-
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trained model, fixed_shape_resizer with the size of 600600 pixels,
kernel stride of 8, 300 proposals, and dynamic learning rate. The
final detector had 95.7% recall, 94.2% AP, 94.9% F1 score, 23.5
mm RMSE, and 8.3 fps processing speed, which were comparable
with most of the above-mentioned performance indicators.
3.8 Individual pullet feeding behaviors

Figure 7 shows the feeding behaviors of individual pullets of
50 d of age during 1 h and under white light. Total feeding time was
364.4 min, total feeder visits were 918 times, and average feeding
duration was 0.4 min per visit. For 26.1% of the time (the highest
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among the 6 categories), the pullets ate for 40-50 s during each
feeder visit; while for 5.9% of the time (the lowest among the 6
categories), the pullets were at feeder for 10-20 s. Three birds
choosing to eat simultaneously accounted for the highest proportion
(30.8%) of the time, while the cases of 8 simultaneous feeding birds
took up the lowest proportion (0.08%). For 42.8% of the time (the
most among the four categories), the pullets chose to stay 600-
900 mm away from other feeding birds. The pullets preferred to eat
at the two sides of the feeder trough rather than the middle.
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Figure 7 Pullet feeding behaviors within one hour of 50 d of age and under white light

4 Discussion

4.1 Evaluation metrics

Appropriate evaluation metrics are critical for model
development, and the metrics selections should be specified with
different applications®™. The true negative rate or specificity was
not calculated in this case because pullets could move between
compartments and the exact number of non-feeding birds in each
frame was not clear. The generic evaluation metric, accuracy, was
not considered either due to the lack of true negatives. Although AP
and F1 score were comprehensive metrics to evaluate false positives
and false negatives, they cannot be the only metrics for model
evaluation. The two were high (mostly>95%) since they were
averaged with the precision and recall; however, the corresponding
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precision or recall sometimes was not optimal. Multiple evaluation
metrics should be considered for machine learning model
development rather than single ones™. The RMSE can tell us how
much deviation the model made to locate feeding birds and whether
the detector is qualified for evaluating spatial feeding behaviors of
poultry. The processing speed (2.1-8.1 fps in this case) provided
evidence on how fast the model can process the images and whether
it has potential for real-time applications.
4.2 Erroneous detection

The faster R-CNN detectors mostly performed well in detecting
pullet feeding behaviors but still had some erroneous detections. As
shown in Figure 8, pullet adhesion, overlapping, and occlusion
around the feeder trough resulted in the detector misidentifying

Feeding bird #: 2
False negative #: 1

Feeding bird #: 5
False negative #: 1
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False negative #: 2 False negative #: 1
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Figure 8 False negative detection (False negatives are marked with solid red rectangles)
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target objects''*l. Such an error became more obvious as more birds
clustered at feeder but may be overcome by increasing model
complexity, which may have more capacity to hold enough features
of objects, thus being more robust. Kang and Chen'” developed a
deep learning network based on ResNet101 and evaluated it with
less false negatives, compared with the lightweight network
architecture, single shot detector (SSD). The detectors could
wrongly recognize some features of non-feeding birds as those of
the feeding ones, causing false positives. Previous investigations
also reported that similar features between unconcern objects and

False positive scenario 1: low confidence score

Confidence Confidence
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Feeding bird #: 4 ~ Feeding bird #: 1
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Confidence
score: 79%

False positive scenario 2: away from feeder trough

=

i}
i /

Feeding bird #: 1
False positive #: 1

Feeding bird #: 1
False positive #: 1

concern objects could lead to false positive detection**!. The false
positive scenarios were summarized by stating that non-feeding
birds falsely detected as feeding birds may have one of the
following features: having a low confidence score of <99%, being
600 mm away from the feeder trough, and being parallel with the
feeder trough (Figure 9). Those false positives may be ruled out
with thresholds of the three features. It is worth noting that the
detection performance could be further improved via tuning feature
extractor and training hyperparameters, as shown in our results.
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Figure 9 False positive detection under different scenarios (False positives are marked with solid green rectangles)

4.3 Feature extractors

Feature extractors can amplify aspects of input that are
important to discriminate and classify target objects and suppress
irrelevant variations™, and those with higher complexity can retain
more features. Among the four feature extractors, the most complex
one, Inception ResNet V2, was more robust due to less false
negative detection, but also more sensitive for objects of concern,
leading to many false positives. Li et all'! compared the
performance of SSD, faster R-CNN, and region-based fully
convolutional network (R-FCN) for floor egg detection and found
that the most complicated R-FCN over-predicted objects. The
complexity of the feature extractors needs to be balanced with the
dataset of single object of interest. With fewer layers stacked onto
the model, the lightweight feature extractor, Inception V2,
processed the images faster!>". In sum, proper CNN architectures
are critical for developing a robust and efficient detector as they can
affect detection performance.
4.4 Pre-trained models

Transfer learning efficiency may depend on the similarity
between the customized dataset and previous datasets'*”. Among the
four datasets, COCO dataset is the most generic and largest one that
contained chickens as well. The KITTI dataset included thousands
of birds which also shared parts of similar features (e.g., feather,
wing, beak, etc.) with pullets in this case. In contrast, the FGVC and
AVA dataset mainly consisted of cars and humans, respectively.
The texture, color, and edges for such objects were significantly

different from those of chickens, and for this reason the pre-trained
models from these two datasets had poorer performance. The
processing speed of the detectors with AVA-trained model was
even compromised because the detectors detected too many non-
feeding birds within an image. To boost transfer learning efficiency,
a survey is recommended to investigate the similarity between the
customized dataset and the dataset of pre-trained models.
4.5 Image resizers

Mode of image resizers did not influence detection results in
this case. Typically, if the shapes of the objects of interest are
distorted after resizing, it may mismatch desired features and
downgrade the detection performance!¥. In this case, feeding birds
were large relative to the whole image because of low camera
installation height, and the birds in the resized images may still
maintain clear features for processing. Interestingly, the detector
with larger image size performed relatively poorly, which was also
reported by Li et al.'? . The feeding birds may lose some critical
features after the images were enlarged. The processing speed was
even diminished with large image sizes because of more pixels
being convoluted compared with smaller sizes.
4.6 Kernel strides

Smaller kernel strides may result in larger feature maps and
retain more pixel information. The features of objects of interest
could be relatively completed in such maps, which promoted the
ability of the detector to differentiate the feeding birds from non-
feeding birds in this case. That is why the stride of 8 had higher
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precision than the stride of 16. Ren et al.” also reported that the
stride of 10 produced more accurate results than the stride of 16.
However, smaller kernel strides also indicated more convolution
steps and led to compromised processing speed. The trade-off
strategies need to be considered for detection accuracy and
processing speed.
4.7 Numbers of proposals

Different numbers of proposals can be proposed by setting the
thresholds of NMS and adjusting the designated number*. With
less proposals, the target feeding birds may be filtered out, resulting
in less true feeding birds being detected, which in turn improved
processing speed. That is why the 100 proposals had lower recall
but higher processing speed. With more proposals, some
unnecessary proposals (e.g., non-feeding birds in this case) were
retained and processed by the detector, leading to lower precision
and processing speed for 500 proposals in this case. The middle
number of proposals (300 proposals) seemed to balance different
aspects of evaluation metrics and obtain decent performance.
However, Wang et al.”?" compared the proposals of 30, 300, and
2000 for dairy recognition and found that the least number of
proposals had the highest AP. The optimal proposal number may be
specific for objects and verified for real applications.
4.8 Learning rate

Learning rate determines the update degree in each step.
Optimizing the training with the same rate could lead to the
oscillation away from minimum loss and further suboptimal models.
Especially in this case, the model with a constant learning rate of
0.003 was suboptimal and caused many false positives. This could
be improved by reducing the learning rates in advanced steps of
training®. It should be noted that the learning rate strategies also
depend on model architecture. Nasirahmadi et al.'’ compared the
learning rates of 0.03, 0.003, and 0.0003 for faster R-CNN, R-FCN,
and SSD, and reported that different models with these learning
rates could result in various mAP for pig behavior detection.
4.9 Automated feeding behavior measurement

Individual feeding pullets could be continuously monitored
with the trained detectors. The extracted behavior information
showed that the pullets showed temporal and spatial preference on
the feeding during the testing period. These behavior measures may
provide valuable insights into farm management and facility design.
For example, by evaluating the simultaneous feeding bird number
and inter-distance of pairs of feeding birds, we could understand
what the dimensions of the feeder trough and stocking density need
to be to fit poultry preference”. In sum, the faster R-CNN feeding
behavior detector is a useful tool to evaluate poultry feeding
behaviors.
4.10 Major innovation and future application

To the best knowledge of the authors, this research is the first
to examine feeding behaviors of poultry inside cage systems, which
provide critical insights into precision poultry management. The
current method relies on the camera installed atop cage systems. In
future application, such a method can be used to monitor feeding
behaviors of birds on the top layers of enriched colony systems.

5 Conclusions

This study developed faster R-CNN feeding behavior detectors
by fine-tuning the feature extractors, pre-trained model, image
resizer, kernel stride, number of proposals, and learning rate. Except
for some cases (i.e., FGVC-trained and AVA-trained models), the
detectors performed well in detecting poultry feeding behaviors.
The precision, recall, F1 score, and AP were mostly over 90%. The

RMSE ranged from 19.5 to 27.3 mm for most of the
hyperparameters, indicating small location errors of detected
feeding birds. The processing speeds were 2.1 to 8.1 fps and
depended on architecture complexity of feature extractors and
hyperparameter tuning. With the trade-off strategies for detection
accuracy and processing speed, we finally deployed the following to
develop the detector: feature extractor of Inception V2, COCO-
trained model, fixed shape_resizer with the size of 600x600 pixels,
kernel stride of 8300 proposals, and dynamic learning rate. With the
trained detector, the temporal and spatial feeding behaviors of
individual pullets could be monitored and characterized. Overall,
the faster R-CNN is a useful tool to monitor the feeding behaviors
of individual poultry.
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