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Abstract: Accurate and rapid determination of nitrite contents is an important step for guaranteeing sausage quality.  This 
study attempted to mine hyperspectral data in the range of 900-1700 nm for non-destructive and rapid prediction of nitrite 
contents in sausages.  The average spectra of 156 samples were collected to relate to the measured nitrite values by partial 
least squares (PLS) regression.  Optimal wavelengths were respectively selected by successive projections algorithm (SPA) 
and regression coefficients (RC) to simplify the PLS model.  The results indicated that PLS model established with 15 optimal 
wavelengths (900.5 nm, 907.1 nm, 908.8 nm, 912.1 nm, 915.4 nm, 920.3 nm, 922.0 nm, 941.7 nm, 979.6 nm, 1083.2 nm, 
1213.2 nm, 1353.0 nm, 1460.2 nm, 1595.6 nm and 1699.9 nm) selected by SPA had better performance with rC, rCV, rP of 0.92, 
0.89, 0.89 and RMSEC, RMSECV, RMSEP of 0.41 mg/kg, 0.89 mg/kg, 0.49 mg/kg, respectively, for calibration set, 
cross-validation and prediction set.  It was concluded that hyperspectral data could be mined by PLS & SPA for realizing the 
rapid evaluation of nitrite content in ham sausages. 
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1  Introduction 

Meat processing is a major branch of the food industry, and the 
demand for meat products for the market is increasing.  As one of 
the popular meat products, ham sausage has consumption 
advantages of pleasant flavor, convenient for carrying and 
ready-to-eat, occupying a considerable market share[1].  Ham 
sausage with high quality is still highly demanded by consumers.  
Nitrite is one of the important additives of ham sausage and is 
usually used to maintain color and freshness.  In other words, the 
nitrite content will influence the quality of ham sausages[2].  
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Besides, nitrite plays an indispensable role in ham sausages, by 
providing oxidation resistance and inhibiting the growth of 
microorganisms such as Clostridium botulinum[3].  However, 
excessive consumption of nitrite will lead to toxic reactions in 
human bodies.  The World Health Organization has reported  
that the lethal level of nitrite intaking is in the range of 8.7 to   
28.3 μmol[4,5].  But in practical production, a few producers 
increase the amount of nitrite to enhance color, attracting attentions 
of consumers and improving sales, which is however harmful to 
humans[6].  Therefore, it is necessary to detect nitrite content and 
ensure the quality of ham sausages. 

At present, the methods to evaluate the nitrite contents of meat 
products are mainly based on spectrophotometric and 
electrochemical detection[7], and most methods are time-consuming, 
tedious, laborious and environmentally unfriendly[8].  In order to 
meet the demand for fast and nondestructive detection of nitrite in 
ham sausages, novel techniques should be considered and exploited. 

It is well known that spectroscopic methods are rapid, 
non-destructive and environmentally friendly, especially 
near-infrared (NIR) spectroscopy[9].  NIR region can be used for 
food quality detection and control because chemical components of 
meat products can adsorb NIR light energy and generate the related 
information for quality evaluation[10].     

Hyperspectral imaging technology, originally used in the field 
of remote sensing by the National Aeronautics and Space 
Administration (NASA)[9], combining the one-dimensional spectral 
technology and two-dimensional imaging technology to obtain 
spectral and spatial information of samples at the same time, has 
been widely used in quality assessment of meat and meat products 
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in recent years[11].  Compared to traditional near-infrared 
technology, hyperspectral imaging technology can provide spectral 
information in each pixel in the acquired images for research.  For 
example, He et al.[12] evaluated the potential of NIR hyperspectral 
imaging to predict Pseudomonas spp. counts distribution in salmon 
fillets, resulting in a good performance with coefficients of 
determination (R2

P) of 0.91 and root mean square error of 
prediction (RMSEP) of 0.49 log10 CFU/g.  Sara et al.[13] 
investigated the performance of different models to predict TVC 
value in rainbow-trout fish fillets using hyperspectral imaging and 
revealed good results.  In addition, the hyperspectral imaging 
technique has also been used in the physical and chemical detection 
of meat products.  Kamruzzaman et al.[14] developed an online 
system using hyperspectral imaging to monitor red meat (beef, 
lamb, and pork) color in the range of 400-1000 nm.  Other 
studies[15,16] also indicated the great potential of hyperspectral 
imaging in meat quality evaluation.  However, few studies have 
been reported on nitrite detection in ham sausage by hyperspectral 
imaging technology. 

 Given the advantages of hyperspectral imaging, in this study, 
we attempted to mine hyperspectral data in the wavelength range of 
900-1700 nm to determine nitrite content in ham sausages in a 
rapid and noncontact way, which will provide a methodological 
reference for further online application in the future. 

2   Materials and methods 

2.1  Sample preparation 
One hundred and fifty-six ham sausages with the same shelf 

life (six months) but different manufacture dates were supplied by a 
local supermarket.  All ham sausages were labeled and transported 
to Meat Processing & Quality Control Lab, Henan Institute of 
Science and Technology, Xinxiang, Henan, China.  According to 
different manufacture dates, all samples were divided into three 
groups for further tests.  Then, a sample with a thickness of 1 cm 
was cut from a ham sausage, resulting in a total of 156 samples 
from 156 ham sausages.  All the samples were evenly divided into 
three groups (52 samples in each group), and samples in Group I, II 
and III expire in 4-6 months, 2-4 months, 0-2 months, respectively. 
2.2  Hyperspectral data acquisition 

In this study, a push broom line-scan hyperspectral imaging 
system (900-1700 nm) was used to acquire hyperspectral images of 
the ham sausage sample in reflectance mode (Figure 1).  The 
hyperspectral images system is mainly composed of a spectrograph 
(Spatial resolution of 5 nm, ImSpector V10E, Spectral Imaging Ltd, 
Oulu, Finland), a high-performance CCD camera (DL-604 M, 
Andor, Ireland), illumination units (Illumination Technologies Inc, 
New York, USA), a lens (the focal length of 30 mm, OLE2, 
Schneider, German), a translation stage (IRCP0076-1COMB, Isuzu 
Optics Corp, Taiwan, China) and a computer installed with 
Spectral Image software and HSI Analyzer software (Isuzu Optics 
Corp, Taiwan). 

On each day, five samples from each group were placed on the 
moving table in hyperspectral imaging equipment and scanned by 
the hyperspectral images system with a moving speed of      
7.13 mm/ms, the penetration depth of 1 cm and the camera 
exposure time of 4.25 ms in the horizontal directions.  As a result, 
156 hyperspectral images of samples were collected.  Then, the 
image calibration was conducted to calibrate the raw hyperspectral 
images into reflectance images.  The white and black images were 
involved to eliminate the influences of the background[17].  The 
whole process can be explained by a formula shown as below: 
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where, IC is calibrated hyperspectral images; IR is raw hyperspectral 
images; IB is black images (0% reflectance) obtained by turning off 
the light source and covering the camera lens with its cap; IW is 
white images obtained by scanning a uniform white tile (99.9% 
reflectance, Isuzu Optics Corp, Taiwan).  

After the completion of image calibration, the region of 
interest (ROI) of each sample was identified and then automatically 
isolated from the background by HSI Analyzer software.  The 
spectra (486 wavelengths with 1.67 nm interval) within all pixels of 
the isolated ROI were averaged and extracted and a total of 156 
mean spectra (corresponding to the 156 samples) were finally 
obtained for further analysis. 

 
Figure 1  Schematic diagrams of main components of the 

hyperspectral imaging systems[25] 
 

2.3  Nitrite content measurement 
After the data extraction, the nitrite content in each sample was 

immediately measured by the naphthalene ethylenediamine 
hydrochloride method in GB5009.33-2016[18].  Firstly, the protein 
was precipitated and the fat was removed.  Then, the nitrite and 
p-aminobenzene sulfonic acid was diazotized and coupled with 
naphthalene ethylenediamine hydrochloride to form purple-red dye 
under the condition of the weak acid.  The content of nitrite was 
determined by the external standard method. 
2.4  Spectral data pretreatment 

It is necessary to conduct spectral data pretreatment to reduce 
the effect from the noise of equipment, the scattering and the 
surrounding environment before the spectral data analysis[19].  In 
this study, several pretreatment methods including moving average 
smoothing (MAS), Savitsky-Golay smoothing (SGS), median filter 
smoothing (MFS), Gaussian filter smoothing (GFS) and 
normalization were applied and carried out using software 
Unscrambler 9.7 (CAMO, Oslo, Norway)[20]. 
2.5  Multivariate date analysis 

After spectral pretreatment, partial least square (PLS) 
regression was performed to establish a relationship between the 
mean reflectance spectral data and the measured value of nitrite[21].  
PLS is one of the most robust and reliable tools for the 
establishment of a calibration model because it is suitable when the 
number of variables is more than that of samples[22].  Among the 
156 samples, 104 samples were used for the establishment of the 
calibration model and the remaining 52 samples were used for 
prediction.  The correlation coefficient of calibration (rC), 
cross-validation (rCV) and prediction (rP), as well as the root, mean 
square error of calibration (RMSEC), cross-validation (RMSECV) 
and prediction (RMSEP) were used for the PLS model performance 
evaluation[23].  In general, a good PLS model has high values of rC, 
rCV, rP and low values of RMSEC, RMSECV, RMSEP.  Besides, 
the residual predictive deviation (RPD) and the absolute value 
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between RMSEC and RMSEP were also used to assess the 
capability of the PLS models[24].  All the modeling operations 
were carried out using Unscrambler 9.7 (CAMO, Oslo, Norway).  
2.6  Informative wavelengths selection and model optimization 

A hyperspectral image is usually characterized by high 
dimensionality and collinearity among contiguous variables which 
requires much time to compute the hyperspectral data[26].  It is 
necessary to remove irrelevant wavelengths and select informative 
wavelengths, which will improve the model accuracy and accelerate 
the data analysis[27].  In this study, regression coefficients (RC) 
and successive projections algorithm (SPA) were respectively 
applied to select useful wavelengths for model optimization.  In 
RC method, wavelengths with higher regression coefficient values 
(regardless of the sign) are regarded as the important 
wavelengths[22].  SPA is often used to solve the colinearity 
problems of spectral wavelengths[28].  In SPA procedure, firstly, 
the candidate subsets of spectra (variable X) and the measured 
values of nitrite content (Y) were constructed and analyzed in a 
matrix.  Then the best constructed candidate subsets were selected 
according to the performance of the established model[29].  By RC 
and SPA methods, the optimal wavelengths were respectively 
selected to optimize original PLS models built with full 486 
wavelengths (F-PLS).  The optimized PLS models (O-PLS) were 
obtained and evaluated by the same parameters used in F-PLS 
models.  The RC and SPA procedure was carried out using 
Unscrambler 9.7 (CAMO, Oslo, Norway) and Matlab R2010b 
software (The Mathworks, Inc, Natick, MA, USA), respectively. 

3  Results and discussion 

3.1  Reference nitrite values 
The reference nitrite values of the 156 samples were calculated 

and shown in Table 1.  In order to ensure the diversity of samples, 
the samples were collected according to the different manufacture 
dates.  The content of nitrite in ham sausages changed due to the 
different manufacture dates.  It can be seen from Table 1 that the 

nitrite content of the collected samples has a wide distribution range. 
 

Table 1  Reference nitrite values (mg/kg) measured by 

spectrophotometric method 

Sample set Number of sample Minimum Maximum Range Mean±SD 

Calibration 104 1.58 6.75 5.17 3.42±1.06 

Prediction 52 1.61 6.40 4.79 3.42±1.04 

Total 156 1.58 6.75 5.17 3.42±1.05 

Note: SD: Standard deviation. 
 

3.2  Spectral characteristics of ham sausage samples 
It has been reported that NIR region is a very useful and 

informative spectral range for qualitative and quantitative 
analysis[30].  The typical average spectra extracted from the ham 
sausages in the wavelength range of 900-1700 nm are shown in 
Figure 2.  In specific, Figure 2a shows the raw spectra, and 
Figures 2b, 2c, 2d, 2e, 2f show the five different pretreatment 
spectra, respectively.  In general, the spectral curves with different 
nitrite content were smooth and had the same trends in the whole 
region.  As can be seen from Figure 2, three obvious absorbance 
peaks are observed at around 985 nm, 1210 nm and 1450 nm in the 
900-1700 nm region.  Among, the intensive absorption peaks at 
around 980 nm and 1450 nm are related to the water content of the 
samples (O-H stretching second and first overtone, respectively)[31].  
The absorption peak occurs at around 1210 nm originated from the 
fat content of samples (C-H stretching the second overtone)[32]. 
3.3  Nitrite prediction by F-PLS model using full wavelength  

The F-PLS models were established using the full 486 
wavelengths and the results were shown in Table 2.  The F-PLS 
models based on the Raw, MAS, SGS, MFS, GFS and Normalize 
spectra exhibited good similar performance in predicting nitrite 
content in ham sausages, with r of 0.87-0.90 and RMSE of 
0.41-0.53 mg/kg.  In addition, the RPD values were within 2-2.5, 
indicating the feasibility of the six F-PLS models in predicting 
nitrite[33].  Also, ∆E values (|RMSEC-RMSEP|) were all close to 
zero, showing good robustness of the six F-PLS models[34]. 

 
a. Raw spectra b. MAS spectra c. SGS spectra 

 
d. MFS spectra e. GFS spectra f. Normalize spectra 

 

Figure 2  Average spectra of ham sausage samples in the wavelength range of 900-1700 nm  
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Table 2  F-PLS models for predicting nitrite using full wavelengths 

Spectra LVs 
Calibration Cross-validation Prediction 

∆E 
rC RMSEC/mg·kg−1 rCV RMSECV/mg·kg−1 rP RMSEP/mg·kg−1 RPD 

Raw 9 0.92 0.41 0.88 0.50 0.91 0.44 2.37 0.03 

MAS 9 0.91 0.44 0.87 0.52 0.90 0.46 2.30 0.02 

SGS 9 0.91 0.44 0.87 0.52 0.90 0.46 2.28 0.02 

MFS 9 0.91 0.44 0.87 0.53 0.91 0.44 2.37 0.00 

GFS 9 0.92 0.41 0.88 0.50 0.91 0.44 2.36 0.03 

Normalize 8 0.92 0.41 0.89 0.49 0.91 0.44 2.35 0.03 

Note: LVs: Latent variables; RPD: residual predictive deviation; ∆E: absolute value between RMSEC and RMSEP 
 

3.4  Selection of optimal wavelengths by RC and SPA 
Although the F-PLS models with full wavelengths (486 

wavelengths) had good predictive performance, the large 
wavelength number still requires much time to process the data[35].  
To accelerate data analysis, informative wavelengths were selected 
from the raw spectral range by RC and SPA, and the results are 
shown in Figure 3 and Figure 4, respectively. 

In RC method, 19 wavelengths at 902.2 nm, 908.8 nm,   
912.1 nm, 913.7 nm, 918.7 nm, 933.5 nm, 936.8 nm, 991.1 nm, 
1216.4 nm, 1249.3 nm, 1382.7 nm, 1384.3 nm, 1499.8 nm,  
1643.6 nm, 1675.1 nm, 1693.3 nm, 1695.0 nm, 1696.6 nm and 
1698.3 nm were selected as the optimal wavelengths.  The 

wavelength number reduced 96% from the original 486 wavelengths. 
In SPA method, as shown in Figure 4a, RMSE plots were 

acquired by operating SPA program for selecting optimal 
wavelengths number.  The RMSE curve showed an overall fall 
trend as the number of optimal wavelengths increased from 1 to 15, 
then a gradual rise when the variable numbers increased from 15 to 
20.  The 15 optimal variables including 900.5 nm, 907.1 nm, 
908.8 nm, 912.1 nm, 915.4 nm, 920.3 nm, 922.0 nm, 941.7 nm, 
979.6 nm, 1083.2 nm, 1213.2 nm, 1353.0 nm, 1460.2 nm,   
1595.6 nm and 1699.9 nm were picked and marked with a square 
marker, as shown in Figure 4b.  The wavelength number reduced 
97% from the original 486 wavelengths. 

 
Figure 3  Selection of optimal wavelengths by RC method 

 
             a. Number of variables included in the model                           b. Optimal wavelength location 

Figure 4  Selection of optimal wavelengths by SPA method 
 

3.5  Nitrite prediction by O-PLS model using optimal 
wavelengths 

Based on the selected optimal wavelengths, the F-PLS model 
using full raw spectra was optimized, and the RC-O-PLS model 
with 19 optimal wavelengths selected by RC and the SPA-O-PLS 
model with 15 optimal wavelengths selected by SPA were 
respectively established.  The specific performances of the two 
optimized models are shown in Table 3. 

In the RC-O-PLS model, the matrix with 104×9 (samples×  

wavelengths) was used for calibration, and the matrix with the rest 
52 samples×19 wavelengths was used for prediction.  The 
RC-O-PLS model had a good performance with the rC, rCV, rP of 
0.92, 0.88, 0.89 and the RMSEC, RMSECV, RMSEP of      
0.42 mg/kg, 0.50 mg/kg and 0.49 mg/kg, respectively.  Although 
the wavelength numbers reduced from 486 to 19, the ability of 
RC-O-PLS model in predicting nitrite contents in ham sausages 
was similar to the F-PLS models with full wavelength.  However, 
∆E value in the RC-O-PLS model slightly increased and the RPD 
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value slightly reduced compared with the original PLSR model, 
which may be the wavelength number reduction.  With the 19 
optimal wavelengths, the RC-O-PLS model can be expressed as a 
linear equation below. 

RC-O-PLS 902.2 nm   nm

 nm  nm  n

nm 912.1

913.7 918.7 933.5 936.8

991.1 1216.4 1249.

m  nm

 nm  n 3 1382.7

1384

m

.

m  nm

3

 n

 

44.62 5.60

0.74 103.95 19.47 145.72

233.20 +190.66 290.17 134.61

137.69

4.25 0.30 X

X X X X

X

Y X

X X X

X
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  




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

1499.8 1643.6 1675.1

1

nm  nm  nm  nm

 nm693.  nm  nm  n3 1695.0 1696.6 1698.3 m

46.38 142.32 61.68

9.37 14.07 28.87 31.42

X X X

X X X X

   

  

                

(2) 
In the SPA-O-PLS model, the new matrix with the size of 

104×15 (samples×wavelengths) for calibration set and 52×15 
(samples×wavelengths ) for prediction set.  As shown in Table 3, 
based on the 15 optimal wavelengths, the performance of the 
SPA-O-PLS model is comparable to the original F-PLS model in 
predicting nitrite values.  The r and RMSE values of calibration, 

cross-validation and prediction were similar to those of F-PLS 
model.  According to the regression coefficients of the 15 optimal 
wavelengths, the SPA-O-PLS model can be expressed as a linear 
formula below: 

908.8

912.1 915.4 920

SPA-O-PLS 900.5 nm  nm  nm

 .3 922.0

941.7 979.6 1083.2 1213.2

135

nm  nm  nm  nm
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 3.0

21.26 25.20
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8
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(3) 
Comparing the RC-O-PLS model and the SPA-O-PLS model, 

it was observed that the ability of the two models in predicting 
nitrite content of ham sausages was similar.  But the optimal 
wavelength numbers of the SPA-O-PLS model were less than that 
of the RC-O-PLS model (15 vs. 19).  Hence, from the whole 
results, it was suggested that the SPA-O-PLS model was more 
efficient and suitable for nitrite content prediction in ham sausages.  

 

Table 3  RC-O-PLS model and SPA-O-PLS model for predicting nitrite in ham sausages using optimal wavelengths 

Model 
Method for 
wavelength  

selection 

Number of  
optimal 

wavelength 
LVs 

Calibration Cross-validation Prediction 
∆E 

rC RMSEC/mg·kg−1 rCV RMSECV/mg·kg−1 rP RMSEP/mg·kg−1 RPD 

RC-O-PLS RC 19 11 0.92 0.42 0.88 0.50 0.89 0.49 2.15 0.07 

SPA-O-PLS SPA 15 10 0.92 0.41 0.89 0.49 0.89 0.49 2.15 0.08 
 

3.6  Nitrite prediction by MLR model using optimal 
wavelengths 

Besides PLS, multivariate linear regression (MLR) can also be 
used for model establishment when the number of wavelengths is 
less than that of samples.  In this study, the MLR models based on 
the optimal wavelengths selected by RC (RC-MLR model) and 
SPA (SPA-MLR model) were respectively built and their 
performance of predicting nitrite content in ham sausages are 
shown in Table 4.  The two MLR models showed good abilities 
for nitrite prediction and the accuracy similar. 

Compared with the RC-O-PLS model and SPA-O-PLS model, 
the two MLR models also had similar results for calibration, 
cross-validation and prediction.  In terms of acceleration of the 
speed of data calculation and model establishment, the SPA-MLR 

model would be better among the simplified models for nitrite 
prediction in ham sausages.  The F-test on the result of SPA-MLR 
was conducted for the sake of statistical soundness.  As shown in 
Table 5, the F-value is 1.13>1 which indicates the test on the right 
side, F<"F (one-tailed critical value)=1.60, p (F≤f)=0.33>0.05, and 
there is no significant difference in precision between the two 
groups of data (reference value and predicted value).  SPA-MLR 
model can be expressed as a linear formula below: 

SPA-MLR 908.8
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 

 

1460.2 1595.6 nm  n 1699.9m  nm96.73 136.63 110.76X X X             
(4) 

 

Table 4  RC-MLR model and SPA-MLR model for predicting nitrite in ham sausages using optimal wavelengths 

Model 
Method for 
wavelength  

selection 

Number of  
optimal 

wavelength 

Calibration Cross-validation Prediction 
∆E 

rC RMSEC/mg·kg−1 rCV RMSECV/mg·kg−1 rP RMSEP/mg·kg−1 RPD 

RC-MLR RC 19 0.92 0.41 0.79 0.65 0.88 0.49 2.17 0.08 

SPA-MLR SPA 15 0.92 0.40 0.89 0.48 0.90 0.47 2.25 0.07 
 

Table 5  F-test two-sample analysis of variance 

 Reference value Predicted value 

Average 3.45 3.38 

Variance 1.07 0.94 

Observed value 51 51 

df 50 50 

F 1.13  

p(F≤f) 0.33  

"F(one-tailed critical value) 1.60  

Note: df: degree of freedom. 

4  Conclusions 

In this study, the hyperspectral data in the wavelength range of 
900-1700 nm for evaluating nitrite content in ham sausages was 
investigated.  The spectral information within the ROIs of the 

hyperspectral images of ham sausages was extracted and averaged 
to relate to the measured nitrite content using PLS algorithm.  
After spectral pretreatment with MAS, SGS, MFS, GFS and 
Normalize methods, the PLS models showed good performance in 
the prediction of nitrite content, with high R and low RMSE.  To 
accelerate the data analysis, 15 optimal wavelengths including 
900.5 nm, 907.1 nm, 908.8 nm, 912.1 nm, 915.4 nm, 920.3 nm, 
922.0 nm, 941.7 nm, 979.6 nm, 1083.2 nm, 1213.2 nm, 1353.0 nm, 
1460.2 nm, 1595.6 nm and 1699.9 nm were selected from the raw 
spectra by SPA to simplify the original PLS model, and the 
SPA-MLR model based on the 15 wavelengths were finally built 
and showed better performance in predicting nitrite content of ham 
sausages (rP=0.90, RMSEP=0.47 mg/kg, RPD=2.25).  The whole 
results indicated that hyperspectral data in the range of 900-   
1700 nm can be mined for nitrite assessment in ham sausages, 
which will provide data support for the development of 
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multispectral imaging inspection in the future online and offline 
application.  In practice, when the same model is used in different 
devices, compatibility should be considered. 
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