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Abstract: The obstacle avoidance controller is a key autonomous component which involves the control of tractor system 

dynamics, such as the yaw lateral dynamics, the longitudinal dynamics, and nonlinear constraints including the speed and 

steering angles limits during the path-tracking process.  To achieve the obstacle avoidance ability of control accuracy, an 

independent path re-planning controller is proposed based on ROS (Robot Operating System) nonlinear model prediction in this 

paper.  In the design process, the obstacle avoidance function and an objective function are introduced.  Based on these 

functions, the obstacle avoidance maneuvering performance is transformed into a nonlinear quadratic optimization problem 

with vehicle dynamic constraints.  Moreover, the tractor dynamics maneuvering performance can be effectively adjusted 

through the proposed objective function.  To validate the proposed algorithm, a ROS based tractor dynamics model and the 

SLAM (Simultaneous Localization and Mapping) are established for numerical simulations under different speed.  The 

maximum obstacle avoidance deviation in the simulation is 0.242 m at 10 m/s, and 0.416 m at 30 m/s.  The front-wheel 

rotation angle and lateral velocity are within the constraint range during the whole tracking process.  The numerical results 

show that the designed controller can achieve the tractor obstacle avoidance ability with good accuracy under different 

conditions. 
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1  Introduction

 

Path tracking of agricultural vehicles is the key technology for 

the automation and intelligence of agricultural machinery[1].  The 

obstacle avoidance ability of vehicles is an important indicator of 

the intelligence of vehicles.  The obstacle avoidance system of 

agricultural vehicles involves two key technologies of precise 

positioning and path re-planning of vehicles[2-4]. 

For precise positioning, GPS positioning, image processing, 

ultrasonic positioning, and other technologies are widely used in 

agriculture[5-7].  Kayacan et al.[8] applied GPS and electronic 

compass to achieve the automatic navigation of tractors, however, 

the GPS signal reception and positioning accuracy are not ideal.  

This is because the branches and leaves of fruit trees block the GPS 

receiver, making it unable to receive satellite signals stably.  

Meanwhile, Wei et al.[9] proposed a set of field obstacle detection 

system based on binocular vision.  The proposed detection system 

can detect the obstacles higher than the canopy of the field crop and 

obtain the range and distance of the obstacle through stereo 
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matching.  Moreover, Nissimov et al.[10] investigated Kinect 

sensors and used it to detect inter-row obstacles in greenhouse crops 

by calculating the gradient of data.  However, during the obstacles 

avoidance process in complex farmland environments, it is not 

possible to implement the algorithm in real-time.    

Path re-planning algorithms can be roughly divided into global 

path planning algorithms and local path planning algorithms[11,12].  

The global path planning algorithm has a large amount of 

computation, with poor real-time performance and dynamic 

performance.  The local path tracking algorithm is the main 

method to realize the obstacle avoidance of agricultural vehicles.  

Wang et al.[13] proposed to use the fuzzy-logic algorithm to design 

the path planning controller.  Although an optimal local path can 

be obtained, it may lead to no solution when dealing with multiple 

obstacles.  Furthermore, Kerr et al.[14] constructed a global 

continuous optimized trajectory with the local approximation based 

on spline method.  However, with the increases in the dimension of 

the parameter space, the algorithm convergence speed is relatively 

slow. 

From the current stage of agricultural navigation, Multi-sensor 

and multi-algorithm fusion technology have gained a lot of 

attention to improve efficiency during the obstacles detecting 

process.  Meanwhile, in the design process of the obstacle 

avoidance controller, improving the control accuracy and the vehicle 

dynamic performance of the agricultural tractors still pose a 

challenge during the trajectory following maneuvering[11,15,16]. 

This paper introduces ROS[17-20] and model prediction 

algorithm to solve the previous problems.  The fusion encoder, 

IMU inertial measurement unit, and laser radar are used for 

locating the position of the obstacles to achieving accuracy that is 

not easily achieved with only one sensor.  This paper also 
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proposes a pre-SLAM mapping of the tracking area, which further 

improves the positioning accuracy and real-time performance of 

agricultural vehicles[21-22].  Finally, the model predicted 

algorithm[23-26] is introduced during the trajectory tracking process.  

Using the model predictive control algorithm, multiple constraints 

can be taken into considerations in the process of path planning to 

compensate for the modeling uncertainties, especially at high speed 

and complex road conditions.  

2  Path re-planning controller 

2.1  Tractor dynamics modeling 

In order to design the path re-planning controller, the tractor 

vehicle dynamic model is needed to be established.  A simplified 

tractor dynamic model[27-29] is illustrated in Figure 1.  The lateral 

force, navigation angle, and yaw rate are considered in details in 

order to research the obstacle avoidance ability.  As is shown in 

Figure 1, x  is the forward speed (m/s); y  is the lateral speed 

(m/s); ay is lateral acceleration (m/s2); φ is the tractor navigation 

angle (rad);   is the yaw rate (rad/s); δ is the navigation angle in 

the global coordinate (rad). 

 

Figure 1  Schematic Diagram of the tractor mathematic model 
 

The mathematic model is given as follow, u=ay is the  
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To rewrite the model in state space form, take 
T=[ , , , , ]x y Y X   as the state variables, u=ay is the control variable 

in the following form. 
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To implantation for real-time computation the controller in 

digital systems, the agricultural vehicle particle model is further 

discretized in (3).  
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In which, k is a discrete-time variable.  According to this 

mathematic model, it is necessary to know the initial information 

(x(k), y(k), φ(k), X(k), Y(k)) of the controlled system at a certain time 

and the control input sequence ay(k), ay(k+1) to predict the output 

sequence of the system in the predicted k+1 time domain.  

    (4) 

Np is the predicted time steps.  And Nc is the control domain steps.  
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To reduce the computational complexity and enhance the 

real-time performance of the control system, this paper set Nc to 2.  

Thus, the prediction model of nonlinear model predictive controller 

is obtained: 
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In order to improve the robust performance of the control 

system, closed-loop correction of the prediction model is coined 

based on the error prediction and real-time feedback.
  

( 1| ) ( 1| )- ( 1| ), 1,2,...,r p pe t i t t i t t i t i N           (7) 

where, ηr(t + i – 1|t) is the system output at t + i – 1 based on the 

real-time information measurement at t; ηp(t + i – 1|t) is the output at  

t + i – 1 based on kinematics model of the agricultural vehicle at t. 

2.2  Obstacle avoidance function 

The paper proposes to construct the detection zone for the local 

re-planning path, as shown in Figure 2.  The LIDAR is used to 

detect the position of the obstacle in the coordinate.  This helps to 

improve the accuracy of path tracking and obstacles.  The obstacle 

avoidance function is put forward to adjust the distance between 

the agricultural vehicle and the obstacle in real time trajectory 

tracking.  As the tractor approaches near toward the obstacle, the 

obstacle function value will increase.  

The obstacle avoidance function is given as follow, 

2 2
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obj
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S
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            (8) 

where, Sobj is the weight coefficient; (x1, y1) is the coordinate value 

of the obstacle and (x0, y0) is the center of gravity point of the 

agricultural vehicle.  The obstacle avoidance function describes 

the influence of the distance between the agricultural vehicle and 

the obstacle on the path re-planning.  When the agricultural 

vehicle approaches the obstacle, the value of the obstacle avoidance 

function will increase and the influence of the obstacle on the path 
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plan will increase.  At this time, the path planned by the path 

re-planning controller will deviate from the reference path to avoid 

obstacles.  When the agricultural vehicle is far away from the 

obstacle, the value of the obstacle avoidance function will decrease 

and the influence of the obstacle on the path plan will decrease.  

At this time, the agricultural vehicle will continue to travel along 

the reference path.  The obstacle avoidance function value varies 

in the obstacle relative coordinate is shown in Figure 3. 

 
Figure 2  Schematic Diagram of the control strategy 

\ 

 

Figure 3  Obstacle avoidance function value in obstacle 

coordinate 
 

For any predicted steps Np, the objective function J(·,·) is 

shown as follows, 
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where, Δu is the control input; Q, R are the weighting factor matrix, 

and ΔΓ is illustrated as follow,  
T( ) ( )=[ ( 1 ), , ( )]r p pt t e t t e t N t           (10) 

The first term of the objective function describes the tracking 

ability of the desired state variables.  The second term 

characterizes the system input.  And the third term illustrates the 

effect of the obstacle avoidance function.  When there is no 

obstacle in front of the agricultural vehicle, the obstacle avoidance 

function value is 0, and the re-planning path is consistent with the 

reference path. 

The path tracking problem is transformed to solve the 

constraint problem of nonlinear quadratic form by setting the value 

range of state quantity and control quantity.  Both the objective 

function and the constraint function are continuous, and the 

gradient is continuous in Equation (9).  Therefore, the objective 

optimization problem is can be solved based on quadratic 

programming of the recursive sequence.  By taking the nonlinear 

boundary constraints into account, the optimization problem can be 

summarized as  
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3  Tractor dynamics model and SLAM map 

3.1  Tractor dynamics model 

The dynamics simulation of the tractor requires the collection 

of a large number of tractor driving parameters.  The ROS system 

is widely used in the unmanned field.  It can combine the data 

collected by various sensors and use the open source function 

package to determine the driving parameters for the agricultural 

vehicle, which greatly simplifies the process of applying the 

driverless algorithm to the agricultural vehicle.  The gazebo 

software under the ROS framework is mainly used to simulate the 

dynamics of robots[30,31].  Considering the complexity of the 

tractor structure, this paper adopts the method of multi-body system 

modeling to decompose the topology of the multi-body system into 

several independent chain subsystems.  The specific structure 

used for later analysis is shown in Figure 4.  

 
Figure 4  Tractor Configuration 

 

The tractor kinetic model of Figure 5 and the topological 

structure Figure 6 was established in ROS-gazebo. 
 

 
Figure 5  Mesh model of tractor 

 
Figure 6  Topological structure 
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3.2  SLAM map 

The paper uses SLAM to map the working area of the 

agricultural vehicle, that is, the two-dimensional map of the grid is 

established in advance by laser radar.  It can make the agricultural 

vehicle locate its position and posture through repeated observation 

of map features (such as trees, pillars, etc.), and then construct the 

map incrementally according to its own position, thereby achieving 

the purpose of positioning and map construction.  The simulation 

was carried out on the mapping environment.  The mapping 

environment was shown in Figure 7, and the mapping process with 

SLAM is shown in Figure 8.  
 

 

Figure 7  Gazebo simulation scene 
 

 

Figure 8  SLAM map 
 

In this paper, the grid mapping construction method based on 

particle filter algorithm is used.  The algorithm combines 

coordinate transformation, speed and rotation angle information, 

and LiDAR detection information to draw a two-dimensional grid 

map.  The planned trajectory is constructed based on it.  

In order to further illustrate the effect of implementing SLAM 

mapping in the tracking area, Gaussian noise is added to the 

ROS-gazebo physical simulation environment for comparative 

simulation.  The tractor advances 4 m at a speed of 1 m/s, then 

rotates 180°, and finally drives to the origin.  The result is shown 

as follow. 

It can be seen from Figure 9a that in the absence of SLAM 

construction, the tractor produces a large deviation at 5.6 s.  At 

this time, it can be seen from Figure 10b that the tractor rotates 180 

degrees and starts to travel to the origin.  Since there is no external 

sensor to verify the position of the tractor, the vehicle will travel 

along the reference path, which will cause the cumulative deviation 

of the error with time.  

However, as can be seen from Figure 9b, when the tractor with 

SLAM map rotates 180° at 5.4 s, it has a process of adjusting the 

front wheel angle.  This is because the ROS with SLAM map 

detects the surrounding environment by laser radar, and compares 

and analyzes with the SLAM map to obtain the right tractor 

position.  Then, the tractor continues along the reference path with 

a small tracking deviation and finally drivers to the origin. 

 
a. Lateral deviation 

 
b. Navigation angle deviation 

Figure 9  SLAM map performance 

4  Simulation and analysis 

In the simulation, Matlab/Simulink runs the path re-planning 

algorithm, which collects the speed, rotation angle, position and 

other information of the tractor dynamics model in ROS-gazebo, 

and output the front wheel angle into the ROS-gazebo dynamic 

model.  The ROS-gazebo toolbox mainly performs vehicle 

dynamic analysis and feedback the sensors’ information into 

Matlab.  The vehicle used in the ROS-gazebo toolbox is shown in 

Table 1.Reference trajectory is shown in Figure10. 

 
Figure 10  Reference trajectory 

 

Table 1  Vehicle parameters 

Technical Parameters Value 

CG to front axle/mm 1016 

CG to rear axle/mm 1526 

Front tire lateral slip rate 0.2 

Rear tire lateral slip rate 0.2 

Front wheel lateral stiffness –67 000 

Rear wheel lateral stiffness –63 000 
 

The road adhesion coefficient u=0.8 and the obstacle size was 

0.3 m×5 m.  The path re-planning controller parameter is chosen 
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as T=0.2 s, Np=25, Nc=2, Q=10*diag(1,1,…,1), R=5*diag(1,1,…,1). 

The objective function parameters are set as follows: 
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4.1  The effect of speed on obstacle avoidance performance 

The linear reference trajectory (desired trajectory) is y=0.5 m, 

the tractor initial pose information is (0, 0, 0), and the linear 

trajectory tracking simulation effect is shown in Figure 11. 

 
a. v = 10 m/s 

 
b. v = 20 m/s 

 
c. v = 30 m/s 

Figure 11  Obstacle avoidance simulation results  
 

From Figure 11, the tractor tracks the reference path and 

avoids the obstacle at different driving speeds with good robustness 

to speed.  The tractor starts from the point where the vehicle does 

not perceive the existence of obstacles.  The re-planning path 

coincides with the reference path.  When the vehicle travels 90 m, 

the vehicle senses the obstacle at 30 m ahead, and the obstacle 

information is fed back to the re-planning controller.  The 

trajectory of the tractor is re-planned, so that the trajectory of the 

agricultural vehicle deviates from the reference trajectory to avoid 

obstacles, and after that, the vehicle quickly tracks back to the 

reference trajectory.  

As is shown in Figure 12, the tractor deviates from the reference 

trajectory when avoiding obstacles, resulting in a large lateral 

tracking deviation.  The maximum lateral deviation is 0.242 m at 

a speed of 10 m/s and reaches 0.416 m at a speed of 30 m/s.  The 

maximum lateral deviation increases when the speed rises.  After 

the avoidance trajectory, the lateral deviation gradually decreases 

toward zero.  The longitude deviation also increases with a higher 

velocity due to the transient response of the vehicle.  All in all, the 

designed obstacle avoidance controller can effectively preplan the 

new trajectory in case of the obstacles with accuracy even under 

different velocities.  

 
a. Lateral distance deviation 

 
b. Longitude distance deviation 

 
c. Lateral speed 

Figure 12  Tractor obstacle avoidance controller accuracy 
 

As is shown in Figure 13, the vehicle with the designed 

obstacle avoidance controller shows good maneuvering 

performance.  All the vehicle dynamics parameters are within the 

constraint range of the objective function.  The lateral acceleration 

of the tractor is kept within ±0.2 m/s2, and the navigation angle of 

the tractor is within ±0.8°.  The dynamic performance of the 

vehicle is kept within the safety region with a good margin.  

4.2 Effect of weight coefficient on obstacle avoidance 

performance 

Figure 14 shows the path tracking results when the weighting 

factor Sobj changes from 10, 100, to 1000 respectively under a 

speed of 20 m/s.  It can be seen from Figure 14a that the obstacle 

avoidance behavior is completed at x = 172.83 m, 186.96 m, and 

199.82 m when Sobj is 10, 100, and 1000 respectively.  When 

increases the weighting factor Sobj, re-planning results tend to be 

more conservative with more safety margin distance.  
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a. Front wheel angle  b. Front wheel angle increment 

 

c. Lateral speed  d. Lateral acceleration 

 

e. Side slip angle 

Figure 13  Tracking stability analysis of tractor obstacle avoidance controller 
 

 

a. Tracking trajectory  b. Front wheel angle 

    

 

c. Lateral speed 

Figure 14  Simulation results of tractor obstacle avoidance with different weight coefficients 
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4.3  Influence of predicted time on obstacle avoidance 

performance 

Figure 15 shows the path tracking results when the predicted 

time Np changes from 5, 15 to 25 respectively when forward speed 

is 20 m/s and Sobj is 100.  When Np=5, the maximum front wheel 

angle of the tractor is 1.78°, and the maximum lateral speed is 

0.285 m/s.  Meanwhile, the maximum front wheel angle is 3.48° 

and the maximum lateral speed is 0.334 m/s when Np=25.  As the 

prediction time domain increases, the steering angle and the lateral 

velocity amplitude decreases, making the steering much smoother.  

The lateral distance deviation during obstacle avoidance 

maneuvering is reduced.  This is reasonable since the controller 

can better predict the future trajectory and reacts even earlier by the 

steering angle.  However, it will exert a large computation load 

for the controller when increases the prediction time.  

 
a. Tracking trajectory 

 
b. Front wheel angle 

 
c. Lateral speed 

Figure 15  Simulation results of tractor obstacle avoidance with 

the different predicted time  

5  Conclusions 

1) The mathematic model and the error predicted model of a 

tractor were established.  By introducing an obstacle avoidance 

function and an objective function, obstacle avoidance 

maneuvering problem was transformed into a nonlinear quadratic 

optimization problem with speed and steering angle constraints.  

2) The tractor dynamics model based on ROS-gazebo was 

established and a scheme of using SLAM to map the track area of 

agricultural vehicles was proposed.  Then the joint simulation of 

ROS-Simulink was realized.  The controller was applied to the 

ROS-Simulink simulation to validate the proposed algorithm. 

3) The simulation results showed that the controller designed 

in this paper can achieve reliable obstacle avoidance under 

different speeds and different control parameters with good 

maneuverability. 
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