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Abstract: The changes in cotton leaf characteristics are closely related to the cotton spider mites’ damage level.  Extracting 

the distinguishable features of cotton leaves is an effective method to identify the level.  However, it faces enormous 

challenges for the classification due to various factors, such as illumination intensity, background complexity, shooting angle 

and so on.  A recognition model is proposed, which is trained through transfer learning with the two-stage learning rate from 

0.01 to 0.001 based on MobileNetV1.  The experiments demonstrate that the deep learning model attains the accuracy of 

92.29% for the training set and 91.88% for the test set of the mixed data.  For testifying the effectiveness of the two-stage 

training method, the models are trained with the two public datasets, CIFAR-10 and Flowers, and attain the accuracy of 95.46% 

and 95.57% for the test sets, respectively.  The average recognition time for a single cotton leaf image is about 0.015 s.  

Furthermore, the mobile terminal application is developed with the model embedded, to realize the real-time recognition for 

cotton spider mites’ damage level in the field. 
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1  Introduction

 

Cotton as one kind of important fiber and oil crop, its 

management is of great significance to increase the income of 

farmers and promote the development of local economy.  With the 

continuous expansion of the planting area, controlling cotton pests 

is becoming more and more intractable[1] in Shihezi, Xinjiang, 

China.  The farmers carry out on-the-spot checks and calculate the 

amount of active cotton spider mites through magnifying glasses, 

to determine the damage level.  They mark the location of the 

damaged cotton plants with carry-on tree branches.  They call 

them the center plants, where cotton spider mite pests would 

expand.  The method is time-consuming, subjective and limited 

obviously.  It influences pest monitoring and affects the quantity 

and quality of cotton to a certain extent.  A mobile terminal 

application is developed to recognize cotton spider mites’ damage 

levels quickly and accurately.  It records the location information 

of the center plant precisely to visualize on the map.  Moreover, 

the farmers conduct regular reviews of sampling points.  It is 

conducive to taking appropriate measures to prevent the 

aggravation of damage degree and control the spread of pest areas 

timely[2]. 

With the development of computer vision[3,4] and agricultural  
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informatization[5,6], many scholars pay more attention to the field of 

plant pests and diseases[7-9].  He et al.[10] extracted the color 

feature set of cotton leaf images damaged by cotton spider mites, to 

classify three damage levels through machine vision technology.  

But variations in background intensity were not considered and the 

non-destructive measurement method was not applied.  Zhang et 

al.[11] adopted the Support Vector Machine (SVM) with radial basis 

kernel function to classify cotton leaves damaged by five kinds of 

pests.  It has attained an accuracy of 88.1% under laboratory 

conditions.  Lu et al.[12] conducted an in-field wheat disease 

diagnosis based on VGG structure.  It has reached an average 

accuracy of 97.95% and maintained the location of disease areas.  

The proposed model has been packed into a real-time mobile 

application.  The classification result was calculated by the server 

and sent back to the mobile terminal.  The studies above indicated 

that machine learning algorithms required the handcrafted design of 

effective feature sets.  Deep learning[13-15] algorithms combine 

simple features into more complex features automatically.  The 

methods realize feature self-learning and attain higher 

accuracy[16-18], and whether the feature selection is reasonable has a 

great influence on the recognition effect. 

Currently, most studies about the classification of cotton spider 

mites' damage level are not applied to the actual scene.  In order 

to realize the real-time recognition through mobile terminal devices 

under field conditions, the MobileNetV1[19], which is the 

lightweight convolutional neural network[20-22], is selected as the 

basic network structure of the model training in this study. 

2  Materials and methods 

2.1  Data collection 

Cotton spider mites are too small to be detected with naked 

eyes.  The spiders grow and mainly suck juice on the back of the 

cotton leaf surface.  It results in yellow and red spots appearing on 

the leaf surface[23].  The cotton leaf image collection has been 
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carried out twice through non-destructive measurement.  For 

simplifying the research, the images only contain the damage spots 

caused by cotton spider mites.  The image acquisition device is 

HUAWEI smartphone, Honor 7, and the resolution of images is 

2448×3264 pixels.  The image collection scene is shown in  

Figure 1. 
 

 
Figure 1  Image collection scene 

 

The first data collection is carried out from August 16th to 19th, 

2017.  The white board is used to mitigate the impact of the 

complex background.  Shihezi city is two time zones west of 

Beijing, China.  The images are directly photographed from 5 pm 

to 7 pm Beijing time and 197 cotton leaf images are gathered.  

The second data collection is carried out from July 18th to 22nd, 

2018.  2369 images were captured with a white board at different 

time periods of the day, to increase the diversities of illumination 

intensity.  1753 images are acquired in a complex field 

environment without a white board to augment background 

complexity. 

2.2  Data classification 

According to ‘Rules for monitoring and forecast of the cotton 

spider mites’[24], there are four damage levels of cotton leaf: level 0, 

no damage; level 1, sporadic yellow patches on the leaves; level 2, 

red patches account for less than 1/3 of the leaf area; level 3, red 

patches account for more than 1/3 of the leaf area.  The four 

damage levels are adopted as the classification labels in the deep 

learning model training process. 

Different image annotation methods are adopted.  According 

to the classification criteria and experiences received from farmers, 

the annotation of the images in the first data collection is conducted 

manually and defined as dataset1.  The recognition model T1,1 is 

established through transfer learning with dataset1 based on 

MobileNetV1.  For cotton leaf images captured in the second data 

collection with a white board, the manual annotation is carried out 

according to the classification criteria firstly.  Then model T1,1 is 

adopted for reclassification, auxiliary for rectification and 

modification.  The final result is defined as dataset2.  For the 

images captured in the complex field environment of the second 

data collection, their backgrounds are more complex than that of 

dataset2 and dataset1.  Hence the manual annotation is only 

performed in accordance with the classification criteria and defined 

as dataset3.  The examples of cotton leaf images after 

classification are shown in Figure 2. 

In Figure 2, the cotton leaf images of dataset2 increase the 

illumination complexity compared with dataset1.  The images of 

dataset3 augment background complexity compared with dataset2.  

The three different datasets are divided into the training and test set 

according to the ratio of 4:1[9] separately.  The distribution of the 

three datasets is shown in Table 1. 

 
Figure 2  Cotton leaf images of different damage levels in 

different datasets 
 

Table 1  Distribution of different damage levels in different 

datasets 

Damage 

level 

dataset1 dataset2 dataset3 

Sample 
size 

Training/ 
test 

Sample 
size 

Training/ 
test 

Sample 
size 

Training/ 
test 

0 44 35/9 383 306/77 138 110/28 

1 52 42/10 1268 1014/254 432 346/86 

2 58 46/12 455 364/91 766 613/153 

3 43 34/9 263 210/53 399 319/80 

total 197 157/40 2369 1894/475 1735 1388/347 
 

2.3  Data augmentation 

In the training process of deep learning models, a large number 

of images are needed to extract effective image features[25,26].  The 

complex collection conditions should be considered in Shihezi, 

Xinjiang, China.  Different data augmentation[17] ways are chosen 

to expand the number of training sets and enhance the robustness of 

the model to image changes[17,27].  Due to that the cotton spider 

mites’ damage level is closely related to the proportion of patch 

area, two ways of image rotating and noise addition are adopted.  

Image rotating can rotate the images according to an angle range 

randomly.  It simulates the shooting angle changes in the image 

acquisition process.  Noise addition such as salt and pepper noise 

or Gaussian noise is used to perform the random perturbation.  It 

can imitate the various degrees of interference information[28] on 

the cotton leaf surface.  After data augmentation, the number of 

training sets are expanded to 40 times, which are increased from 

157 to 6280 for dataset1, from 1894 to 75 760 for dataset2, and 

from 1388 to 55 520 for dataset3. 

2.4  Design of experiments 

In the MobileNetV1 structure, the standard convolution is 

factorized into depthwise convolution and pointwise convolution, 

which is depicted in the model calculation section of Figure 3.  

The depthwise separable convolution can greatly reduce the 

amount of computation and change the size of the model.  The 

3×3 depthwise separable convolution applies between 8 to 9 times 

less computation than standard convolution[19].  Based on 

MobileNetV1, the model with the two-stage training method is 

established.  It is integrated into the mobile application software 

and provides support for the real-time recognition of cotton spider 

mites’ damage level in the field.  After the captured image 

recognized by the model, the information of damage level and 

geographical location is uploaded to the server in real-time.  The 
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sampling points are realized visualization on the map.  The greedy 

algorithm[23] is employed to perform path optimization on the 

sampling points selected through farmers.  The optimized 

inspection route is rendered to achieve a review of selective 

sampling points in the field.  The technical pipeline is shown in 

Figure 3. 

 
Figure 3  Technical pipeline 

 

The models training is performed on the Inspur high 

performance computing cluster platform with NVIDIA Tesla 

K40m GPU, and its memory is 12GB.  The system is GNU/Linux 

3.10.0-327.el7.x86_64, the compile and run environment is 

Anaconda 5.1 for Python 3.6, and the model training framework is 

TensorFlow 1.8.0[30]. 

The model trainings proceeded with different datasets.  They 

are trained through transfer learning based on the model 

MobileNet_v1_1.0_224 (named model T0 in the study) generated 

with ILSVRC-2012-CLS[29].  In addition, the hyper parameters[19] 

are all set that, the width multiplier α is 1 and the resolution 

multiplier ρ is 1.  All images are downsampling into the size of 

224×224 pixels with bilinear interpolation[30]. 

The definition of model accuracy is shown as follows, 

100%
T

accuracy
T F

 


      

       (1) 

where, T is the number of correctly recognized images, and F is the 

number of incorrectly recognized images. 

The model training process is shown in Figure 4. 

The steps of the model training process are as follows, 

(1) Model training based on model T0 and dataset1.  Model 

T1,1 is obtained with good recognition effect and go to step (2). 

(2) Recognize dataset2.  If the recognition performance is 

good, go to step (4).  Otherwise, go to step (3). 

(3) Model training based on model T0 and dataset2.  Model 

T2,1, T2,2 and T2,3 are obtained.  Among them, model T2,3 performs 

the best recognition effect and go to step (4). 

(4) Recognize dataset2.  If the recognition effect is good, go 

to step (7).  Otherwise, go to step (5). 

(5) Model training based on model T0 and the mixed data of 

dataset1, dataset2 and dataset3.  Model T1+2+3,1 and T1+2+3,3 are 

obtained.  Among them, model T1+2+3,3 attains the best recognition 

effect and go to step (6). 

(6) Recognize the mixed data of dataset1, dataset2 and dataset3.  

If the recognition performance is good, turn step (7).  Otherwise, 

replace model T0 and go to step (1). 

(7) The model is selected as the ultimate recognition model for 

cotton spider mites’ damage level. 

3  Results and discussions 

3.1  Experiments of model training with dataset1 

The training is performed through transfer learning based on 

model T0.  It is trained with the initial learning rate set as 0.01.  

The train loss function curve is shown in Figure 5. 

 
Note: T denotes transfer learning; i denotes dataset (i=1, 2, 3 1+2+3); j denotes 

learning rate (j=1, learning rate =0.01; j=2, learning rate =0.001; j=3, learning 

rate =0.01→0.001). 

Eg. T1,1 denotes the attained model training with dataset 1 through transfer 

learning of model T0 with learning rate of 0.01. 

Figure 4  Flow chart of the model training process 
 

 
Figure 5  Loss function curve of model training with dataset1 
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In Figure 5, the train loss function curve tends to converge 

when the training steps reach about 40 000, and the loss value is 

about 0.3.  The model obtained this moment is selected as model 

T1,1.  The recognition results for dataset1-test and dataset2 are 

displayed in Table 2. 
 

Table 2  Recognition results of model T1,1 

Dataset Accuracy/% 

Dataset1-test 90.00 

Dataset2-training 41.45 

Dataset2-test 44.21 
 

From Table 2, model T1,1 has a poor recognition effect on 

dataset2 although it achieves good performance on dataset1.  The 

analysis of the phenomenon is as follows, the images of dataset2 

increase illumination complexity compared with dataset1 due to 

different capture time.  It reveals model T1,1 is less robust to the 

changes of illumination intensity.  Thus the model training is 

performed with dataset2 which captured in different illumination 

intensities. 

3.2  Experiments of model training with dataset2 

When adopting the mode of transfer learning, it is a better 

choice to reduce the initial learning rate to 1/10 of the original[31].  

Three different learning rates, 0.01, 0.001 and from 0.01 to 0.001 

are applied while training with dataset2.  The loss function curves 

are shown in Figure 6. 

 
Figure 6  Loss function curves of model training with dataset2 

 

In Figure 6, the curves reveal that:  

(1) For the model training with the initial learning rate of 0.01, 

the train loss function curve tends to converge when training steps 

reach about 40000.  The loss value is about 0.75.  The model 

obtained at the moment is selected as model T2,1.  With the same 

initial learning rate of 0.01, the loss value of model T2,1 is higher 

than that of T1,1.  The fitting is more difficult because of the 

increased illumination complexity of dataset2 compared with 

dataset1. 

(2) On the account that the initial learning rate of model T0 is 

0.01, it is reduced to 0.001 to conduct model training.  The train 

loss function curve tends to converge when the training steps reach 

about 40000, and the loss value is about 0.6.  The model obtained 

at the moment is selected as model T2,2.  With the same dataset, 

the training steps are roughly the same between model T2,2 and T2,1.  

The loss value of model T2,2 is lower than that of T2,1.  It illustrates 

that the fitting performance is relatively good with the learning rate 

reduced to 1/10 of the original through transfer learning. 

(3) The two-stage model training with learning rate from 0.01 

to 0.001 is performed.  The model attained in the first stage is 

model T2,1.  Then model training of the second stage is continued 

with the learning rate reduced to 0.001.  The loss function curve 

tends to converge again when the total training steps reach about 

160 000, and the loss value is about 0.1.  The model obtained at 

the moment is selected as model T2,3.  With the same dataset, the 

loss value of model T2,3 is lower than that of T2,2 and T2,1 obviously.  

It illustrates that the two-stage training method can make the model 

fit better.  The loss value has begun to fall below that of the 

previous two trainings when the total training steps reach about 

60000.  It indicates that the training of the second stage can be 

better and faster fitted.  Nevertheless, the total training steps of 

model T2,3 is increased by 3 times of model T2,1.  Comparing the 

model training processes with three different learning rates above, 

the corresponding loss value becomes smaller when the loss 

function converges.  It reveals the predictive values better fit the 

true values with the two-stage learning rate from 0.01 to 0.001.   

The recognition results for the test set of dataset2 with 

different models are shown in Table 3. 
 

Table 3  Recognition results of different models with the test 

set of dataset2 

Model Accuracy/% 

T2,1 76.84 

T2,2 81.05 

T2,3 96.00 
 

From Table 3, the accuracy of model T2,2 is increased by 

4.21% compared with T2,1 for the test set of dataset2.  Otherwise, 

the accuracy of model T2,3 is further improved with respect to T2,2 

and T2,1.  The recognition result for dataset3 with model T2,3 is 

shown in Table 4. 
 

Table 4  Recognition result of model T2,3 with dataset3 

Dataset Accuracy/% 

Training 31.41 

Test 30.84 
 

From Table 4, model T2,3 has a poor recognition effect on 

dataset3 which captured in the complex field environment.  It 

indicates that model T2,3 is less robust to the changes in background 

complexity.  Thus the model training is performed with the mixed 

data of dataset1, dataset2 and dataset3. 

3.3  Experiments of model training with mixed data of 

dataset1, dataset2 and dataset3 

The training is performed with the mixed data of dataset1, 

dataset2 and dataset3 through transfer learning based on model T0.  

The two-stage learning rate from 0.01 to 0.001 is used.  The train 

loss function curves are shown in Figure 7. 

 
Figure 7  Loss function curves of model training with mixed data 

 

In Figure 7, the curve tends to converge when the training 

steps reach about 40 000 with the initial learning rate of 0.01 in the 

first stage.  The loss value is about 1.2.  The model obtained at 

the moment is selected as model T1+2+3,1.  With the same initial 

learning rate of 0.01, the loss value of model T1+2+3,1 is higher than 
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that of T2,1 and T1,1.  It illustrates fitting is more difficult during 

the training process because of the increased illumination and 

background complexity of the mixed data.  Model T1+2+3,1 attains 

the accuracy of 64.47% and 64.62% for the training and test set of 

the mixed data.  Thus, the recognition effects of model T1+2+3,1 are 

not good. 

The model training of the second stage is continued with the 

learning rate reduced to 0.001 based on model T1+2+3,1.  The train 

loss function curve tends to converge again when the total training 

steps reach about 160 000, and the loss value is about 0.1.  The 

model obtained at the moment is selected as model T1+2+3,3.  With 

the same two-stage model training method, the loss value of model 

T1+2+3,3 is slightly higher than that of T2,3.  It indicates the fitting is 

more difficult because of the increased background complexity.  

Otherwise, the loss value of model T1+2+3,3 is higher than that of 

model T1+2+3,1, whereas, the convergence time is increased by 3 

times.  It illustrates that a better fitting effect is at the expense of 

more training time to some extent.  The validation loss function 

curves are shown in Figure 8. 

 
Figure 8  Validation loss function curves of model training with 

the test set of mixed data 
 

The curves in Figure 8 illustrate that the validation loss value 

for the test set of mixed data shows a downward trend during the 

training process.  The validation loss value is about 0.5 when the 

total number of steps is about 160 000 with the learning rate 

reduced from 0.01 to 0.001.  It shows the obtained model T1+2+3,3 

performs better classification effect and better generalization ability.  

The recognition results for the mixed data and different datasets 

with model T1+2+3,3 are shown in Table 5. 
 

Table 5  Recognition results of model T1+2+3,3 

Dataset Accuracy/% 

Mixed data 
Training 92.29 

Test 91.88 

Dataset1 
Training 93.63 

Test 92.50 

Dataset2 
Training 92.71 

Test 92.21 

Dataset3 
Training 91.57 

Test 91.35 
 

The results in Table 5 further authenticate the attained model 

T1+2+3,3 has a higher accuracy for each dataset.  The recognition 

results for the cotton leaf images of different damage levels in the 

test set of the mixed data are shown in Table 6. 

From Table 6, model T1+2+3,3 attains the accuracy of more than 

90% for each damage level.  Under the premise of the better 

overall recognition effect, it achieves a good recognition effect for 

each damage level, especially confusing level 1 and level 2.  For 

cotton leaf images, the probability values of each damage level that 

model T1+2+3,3 calculates are shown in Figure 9.   

Table 6  Recognition results for cotton leaf images of different 

damage levels with model T1+2+3,3 

Damage level 

Recognition level 

Accuracy/% 

0 1 2 3 

0 106 8 0 0 92.98 

1 7 322 21 0 92.00 

2 0 14 233 9 91.02 

3 0 0 11 131 92.25 
 

 
Figure 9  Model recognition results of cotton leaf data for each 

damage level 
 

In Figure 9, model T1+2+3,3 attains a good recognition effect and 

achieves certain robustness to the cotton leaf images with changes  

of illumination intensity and background complexity. 

3.4  Experiments of model training with public datasets 

In order to corroborate the effectiveness of the two-stage deep 

learning model training method, the model trainings are performed 

with public datasets, CIFAR-10 and Flowers.  The three different 

learning rates, 0.01, 0.001 and from 0.01 to 0.001 are applied.  

The recognition results for the test sets with different attained 

models are shown in Table 7. 
 

Table 7  Recognition results for public datasets 

Dataset 

Accuracy of different initial learning rates/% 

0.01 0.001 0.01→0.001 

CIFAR-10-test 77.26 76.90 95.46 

Flowers-test 94.53 92.19 95.57 
 

From Table 7, the accuracy of the attained model with the 

two-stage training method is higher than that of models trained 

with the learning rate of 0.01 or 0.001 alone for each dataset.  It 

proves the two-stage training method also achieves a good 

recognition effect for the two public datasets. 

4  Conclusions 

In this study, the two-stage deep learning model training 

method has been proposed.  It is trained with a higher initial 

learning rate of 0.01 in the first stage.  The learning rate is 

reduced to 0.001 in the second stage after the first convergence.  
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The recognition model for cotton spider mites’ damage level based 

on MobileNetV1 is developed.  It attains the accuracy of 92.29% 

for the training set and 91.88% for the test set of the mixed data.  

The average recognition time for a single cotton leaf image is about 

0.015 s.  Thus, the model has high recognition accuracy, real-time 

performance and better generalization ability.  It is suitable for 

cotton leaf images in single and complex scenarios.  Moreover, 

the mobile terminal application is developed based on the model to 

realize real-time recognition for cotton spider mites’ damage level 

in the field.  It makes the control work of cotton spider mites more 

accurately, efficiently and timely.  Although the model can better 

recognize the captured cotton leaf images of different damage 

levels in the field.  Meanwhile, the obtained models that with the 

two public datasets, CIFAR-10 and Flowers through the two-stage 

training method attains a better recognition effect.  Such an 

in-depth exploration of the reduced range of high-to-low learning 

rates has been not conducted.  Further, we will perform 

experiments about the reduced range of learning rate to optimize 

the model. 
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